
SVM and Kernel methods

Primary references:
John Shawe-Taylor and Nello Cristianini,  Kernel Methods for
Pattern Analysis

Christopher Burges, A tutorial on support vector machines for
pattern recognition, Data Mining and Knowledge Discovery 2,
121–167 (1998).

Other references:
Aronszajn  Theory of reproducing kernels. Transactions ofß
the American Mathematical Society, 686, 337-404, 1950.



Machine learning: support vector machine

Felipe Cucker and Steve Smale,  On the mathematical
foundations of learning. Bulletin of the American
Mathematical Society, 2002.

Teo Evgeniou, Massimo Pontil and Tomaso Poggio,
Regularization Networks and Support Vector Machines
Advances in Computational Mathematics, 2000.

Grace Wahba, Spline Models for Observational Data Series
in Applied Mathematics, Vol. 59, SIAM, 1990. (Chapter 1)



SVM in cancer
1.  SVM illustration in cancer classification

Example 1:  Myeloid vs. Lymphoblastic leukemias

ALL:  acute lymphoblastic leukemia
AML:  acute myeloblastic leukemia

SVM training:  leave one out cross-validation



SVM in cancer

S. Mukherjee
fig. 1:  Myeloid and Lymphoblastic Leukemia classification by SVM,

along with other discrimination tasks; k-NN is -nearest neighbors; WV5
is weighted voting



SVM in cancer

S. Mukherjee
fig 2:  AML vs. ALL error rates with increasing sample size;



SVM in cancer

Above curves are error rates with split between training and
test sets.

Red dot represents leave one out cross-validation error rate.
Point data are values from selected single experiments.



Some topology



Some topology
Def 3:  A set  is if it does not contain its\ § ‘. open 
boundary It is  if it contains its boundary.Þ closed

Ex 1:   in  :‘#



Some topology
Theorem 1:     A set        is open  iff    (=b ‘ b§ µ.

complement of   )   is closed.b

Def. 4.  V © ‘. is  if it is contained in somebounded
(sufficiently large) ball , i.e., does not extend to F Ð!Ñ _Q



Some topology
Ex.:  In a ball of radius 5 is bounded; -axis is‘#ß B
unbounded:



Normed spaces
2.  Normed linear spaces - vector spaces with norms

If   inner product space (i.e. vector space with innerZ œ
product defined), recall norm of a vector is

m m œ Ø ß ÙÞv v vÈ   

Easy to show norm has which follow from those3 properties 
of inner product:

(a)  v v vm m   !à m m œ ! œ !  iff ( ) .if and only if
(b)  v w v wm  m Ÿ m m  m m
(c)  v vm+ m œ l+lm m + − if ‘



Normed spaces

Ex. 2:   Let Consider vector spaceV œ Ò!ß "ÓÞ

Z œ GÐVÑ œ Vall continuous functions on , 

For  let0 − Z

m0m œ 0ÐBÑ_
B−V
max| |.

Easy to check  satisfies properties of norm (exercises).m0m_

Norm  represents  of vector .m mv vlength



Normed spaces
Even if inner product defined,  assignment of lengthnot any
m mv v, to all vectors  which satisfies properties  isÐa) - (c)
called a norm.

Def.  5:      is a  A vector space Z normed linear space (NLS)
if  for all  there is a norm (length)  which satisfiesv v− Z ß m m
(a) - (c).

i.e.,  is an NLS if we have notion of length on itZ



Normed spaces
Ex.  3:    P V: norms:   if  is the box

V œ Ò#ß #Ó ‚ Ò#ß #Ó ´ ÖÐBß CÑ À lBlß lCl Ÿ #×,

(or any other closed bounded subset of )‘. Þ



Normed spaces
Let  and x xœ ÐBß CÑ . œ .B .CÞ

Let  be a function Define norm0ÐBß CÑ œ 0Ð Ñ Þx

m0m œ l0Ð Ñl . l0ÐBß CÑl .B.C Þ:
V V

: :
"Î: "Î:Œ  Œ ( (x x ´

Can verify this has the properties of a norm (exercises).
We define vector space of functions

P ÐVÑ œ 0 À m0m  _ Þ:
:e f

Can show this is vector space (i.e., closed under addition and
sclalar mult) and a NLS (i.e.  is a norm).m0m:



4.  Preliminaries

Def. 6.  A  matrix  is  if  for all ,8 ‚ 8 Q Q œ Q 3ß 4symmetric 34 43

i.e. is unchanged if reflected about its diagonal.

A matrix  is if all of its eigenvalues are non-Q positive 
negative.



Equivalently if and and ,  isa aœ œ Ò+ ßá ß + Óß Ø † † Ù

+
+
ã
+

Ô ×Ö ÙÖ Ù
Õ Ø

"

#

.

X
" .

standard dot product on then‘.ß

Ø ßQ Ù ´ Q   !a a a aX

for all aÞ



RKHS
5.  Reproducing Kernel Hilbert spaces:

Let  be a closed bounded set (e.g. set of possibleV © ‘.

microarrays ).x

Let  be any complete vector space of (classification)[
functions on  with inner product  defined  (recall thisV Ø0ß 1Ù
makes  a Hilbert space).[

Note this also defines a norm for :0 − [

m0m œ Ø0ß 0ÙÈ



RKHS
Motivation:  xrecall we want to find function  which0Ð Ñ
classifies microarrays  correctly.x

Recall penalty , penalizing, e.g. for non-PÐ0Ñ œ m0m#

smoothness of .0

The norm  comes from inner product on some vectorm0m
space  of functions on domain .[ V

This vector space  (which gives desired penalty norm )[ m0m
will be a reproducing kernel Hilbert space.



RKHS
Definition 7:  We say  is a[  reproducing kernel Hilbert
space (RKHS) if whenever we  an , then for fix allx − V
functions 0 − [

l0 Ð Ñl Ÿ Gm0mx

for a fixed constant .G



RKHS
Definition 8:   A is a function ,  on pairskernel function OÐ † † Ñ
x yß − V which is symmetric, i.e.,

OÐ ß Ñ œ OÐ ß Ñx y y x .

and , i.e. for any fixed collection  the positive x x" 8ßá ß 8 ‚ 8
matrix

K K x xœ Ð Ñ ´ OÐ ß Ñ34 3 4

is positive.



O determines [
6. The kernel function x y uniquely corresponds toOÐ ß Ñ
the space [

Theorem 1:  Given an RKHS   of functions on ,[ ‘V § .

there exists a unique kernel function  such that for allOÐ ß Ñx y
0 − ß[

0Ð Ñ œ Ø0Ð † ÑßOÐ † ßx xÑÙ[

(inner product above is in the variable  ;    is fixed).† x 

Note this means that evaluation of  at  is equivalent to0 x
taking inner product of  with the fixed function ,0 OÐ † ß Ñx



O determines [

i.e.  is  by using 0Ð Ñ Ox reproduced

We call  the  of  the space  ofOÐ ß Ñx y reproducing kernel [
functions.



O determines [
Definition 9:  We call the above kernel function  theOÐ ß Ñx y
reproducing kernel of the function space .[

Definition 10:  A is a kernel functioncontinuous kernel 
OÐ ß Ñ Þx y x y which is also continuous as a function of  and 

Recall for continuous function  on   we define0Ð Ñ Vx

m0m œ l0Ð Ñl_
B−V
max x .



O determines [
Theorem 2:
(i) For every continuous kernel , , there exists a OÐ † † Ñ on V
unique RKHS  of functions on  such that  is its[ V O
reproducing kernel.
(ii)  Moreover, this  consists of continuous functions, and for[
any 0 − [

m0m Ÿ Q m0m_ O [,

where Q œ OÐ ß ÑÞO
ß −\
max
x y

È x x



SVM
7.  Support vector machines

Recall the regularization setting:

Wish to separate classes  and  (e.g. cancerous andV Vµ
non-cancerous microarrays)

Have  examples8

H œ ÖÐ ß C Ñßá ß Ð ß C Ñ×x x" " 8 8 , 

with feature vector (e.g. microarray) , classx3
.− ‘

C − œ Ö „ "×3  .



SVM
Thus  tells whether  is in class .C3 3x V

Want to find function   which  above0 À Ä‘ . generalizes
data so  can predict class  of feature vector .0Ð Ñ œ C Cx xnovel 

In fact we want something more general:  function  which0Ð Ñx
will best help us decide the true value of .C



SVM
It may not need to be that we want , but rather we0Ð Ñ œ Cx
want

œ 0Ð Ñ " C œ "
0Ð Ñ " C œ "

ß
x
x

>> if  
<< if (2)

i.e.,  is large and positive if the correct answer is 0Ð Ñ C œ "x
(e.g. cancerous) and is large and negative if the correct0Ð Ñx
answer is  (not cancerous).C œ "

Note the larger  is the more certain we are that class0Ð Ñx
C œ "Þ



SVM

Decision rule: conclude whether  based on rule (2).C œ „ "

How to choose the best ?0

Need  which works correctly on known samples 0 H œ Ö ß C ×x3 3

and which is , i.e., satisfies some a priorireasonable
assumptions (e.g. smoothness).



SVM
Recall:
We can still choose best  by recalling 0 regularization setting:

0 œ Z ÐC ß 0Ð ÑÑ  m0m ß
"

8
arg min

0− 3œ"

8

3 3 O
#

[

" x -

where  norm in an RKHS , e.g.,m0m œO [

m0m œ mE0m œ ÐE0Ñ .BO P
#

# (
where   as earlier.E0 œ 0  0.

.B

#

#

(note m0m ´ m0m ÑÞO [



SVM

How do we measure error between x0Ð Ñ C and ?

Hinge function :Z

Z Ð0Ð Ñß CÑ œ Ð"  C0Ð ÑÑx x ,

where

Ð+Ñ ´ Ð+ß !ÑÞ max

(will discuss further)



The Representer Theorem

1.  An application:  using kernel spaces for regularization

Assume again we have unknown function  on , with0Ð Ñ Vx
x œ ÐB ßá ß B Ñ œ" .

X  microarray values.

Recall

if >> 1 we are certain  (cancer)0Ð Ñ −x x V

if << 1 we are certain  (no cancer)0Ð Ñ  − µx x V



Motivation:  find the classifier 0ÐxÑ

Assume  vector space of functions on  (more0 − œ V[
specifically an RKHS with kernel function )OÐ ß Ñx y

Our data H0

H0 œ ´ ÐC ßá ß C Ñ œ Ð0Ð Ñßá ß 0Ð ÑÑy x x" 8 " 8

œ Ö ßá ß ×correct classification of samples x x" 8 3œ"
8



Motivation:  find the classifier 0ÐxÑ
To find best choice , approximate it by finding the0 œ 0!
minimizer

0 œ Z Ð0Ð Ñß C Ñ  m0m Þs "

8
arg min

0− 3œ"

8

3 3
#

[
[ Ÿ" x - (1)

where constant.- œ



Motivation:  find the classifier 0ÐxÑ
Note we are finding an  which balances minimizing0

data error œ Z Ð0Ð Ñß C Ñ œ Ð0Ð Ñ  C Ñ ß
" "

8 8
" "
3œ" 3œ"

8 8

3 3 3 3
#x x

with minimizing

PÐ0Ñ œ m0m#[, 

i.e., penalty for lack of smoothness.



Motivation:  find the classifier 0ÐxÑ
Solution to such a problem will look like:

Will compromise between fitting data (which may have error)
and trying to be smooth.



Motivation:  find the classifier 0ÐxÑ
A remarkable fact: best choice   can be found 0s explicitly
using the  of space  ofreproducing kernel function OÐ ß Ñx y [
allowed choices of .0



Solving the minimization
2.  Solving the minimization

Consider optimization problem (1).

Claim we can solve it explicitly.

Recall want to find

0 œ Z Ð0Ð Ñß C Ñ  m0m Þ Ð Ñ
"

8
" 3 3

0− 3œ"

8
#arg min 1

[
[" x -

Note we can have, e.g., Z Ð0Ð Ñß C Ñ œ Ð0Ð Ñ  C Ñ Þx x3 3 3 3
#



Representer theorem
We have the

Representer Theorem:  The solution of the Tikhonov
optimization problem  can be writtenÐ"Ñ

0ÐBÑ œ + OÐ ß Ñß"
3œ"

8

3 3x x (2)

where are the examples and  is the reproducingx x y3 OÐ ß Ñ
kernel of the RKHS .[

Important theorem:  we only need to find  numbers  to8 +3

solve the infinite dimensional problem (1) above.



3.   Matrix formulation

Considering again the case where we have information

H0 œ Ð0Ð Ñßá ß 0Ð ÑÑ œx x y" 8 ,

We want to find

0 œ Z Ð0Ð Ñß C Ñ  m0m Ð"Ñ
"

8
" 3 3

0− 3œ"

8
#arg inf

[
[" x -

Plugging universal solution



Matrix formulation

0Ð Ñ œ + OÐ ß Ñx x x"
4œ"

8

4 4

into (1) we get:

0 œ Z + OÐ ß Ñß C  + OÐ ß Ñ
"

8
" 4 4 4 4 3

+ ßáß+ 3œ" 4œ" 4œ"

8 8 8 #

arg inf
" 8

" " "  ¾ ¾x x x x-
[

(1)



Matrix formulation
Note

¾ ¾" "
4œ" 3œ"

8 8

4 4 3 4 34

#
X+ OÐ ß Ñ œ + + O œ O Þx x a a

[

where , and K x x aœ ÐO Ñ œ ÐOÐ ß ÑÑ œ Þ

+
+
ã
+

34 3 4

"

#

8

Ô ×Ö ÙÖ Ù
Õ Ø



Matrix formulation
Thus

0 œ Z + OÐ ß Ñß C 
"

8
! 4 3 4 3

− 3œ" 4œ"

8 8
Xarg min

a ‘8

 " " x x a Ka- Þ

This now minimizes over  and is now -a œ Ò+ ßá ß + Ó 8" 8
X

dimensional minimization problem.

Can take derivatives wrt  and set equal to 0+ Þ3



Matrix formulation
Special case:  x xZ Ð0Ð Ñß CÑ œ Ð0Ð Ñ  CÑ Þ#

Here

a x x a aœ + OÐ ß Ñ  C  O
"

8
arg min

a− 3œ" 4œ"

8 8

4 3 4 3

#

X

‘8

 " "  -

œ Ð  Ñ  Þ
"

8
arg min

a−

# X

‘8

Ka y a Ka-

where  and  (known classesa yœ Ò+ ßá ß + Ó œ ÒC ßá ß C Ó" 8 " 8
X X

of examples ).x3



Matrix formulation

Take the gradient with respect to  and setting to  we get:a !

! œ OÐO  Ñ  # O œ  # O  O
# #O #

8 8 8
a y a a y- -Œ #

.

œ #O   #O Þ
O

8 8
Œ - a y



Matrix formulation
Thus if  is nonsingular:O

a K I yK y
œ  œ  8 Þ

8 8
Œ  Š ‹ a b- -

"
"

where identity matrix.I œ œ

" ! á !
! " á !
! ! ä !
! ! á "

Ô ×Ö ÙÖ Ù
Õ Ø

Explicit solution.



Matrix formulation
Thus

0 Ð Ñ œ + OÐ ß Ñ
"

8
" 3 3

3œ"

8

x x x"
= sum of kernel functions.




