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derive approximation theoretic results from statistical learning theory.

The authors congratulate Professor Charles Chui on the occasion of his sixty
fifth birthday.

1. Introduction

Reproducing kernel Hilbert spaces (RKHS) [1] are the settings of choice of ap-
plied probabilists and statisticians (Whaba [18]) and kernel machine/statistical
learning researchers, (e.g., Cuker & Smale [3], Girosi [5], Poggio & Smale [12],
Schölkopf and Smola [13], Shawe-Taylor and Chistianini [14], Vapnik [17], and
Zhou [21]). In kernel machine learning for example, one often uses RKHS or their
r-balls as hypothesis spaces.

F. Girosi was the first to apply statistical learning theory [SLT] results to ob-
tain approximation theoretic bounds [4]. In this paper we give a RKHS setting
for Girosi’s results. The bounds depend only on the complexity of the class of
reproducing kernels and the number of data points. For functions in RKHS our
results yield sup norm, probabilistic, non-asymptotic bounds. Our methods yield
L∞ errors which differ from the L1 and L2 norm errors of, e.g., regularization [9]
and kernel density estimation [6, 19]. The essence of these methods has to do with
methodologies for approximating integrals by sums. This topic itself has a wide
literature; for some recent results see [11].

For a general reproducing kernel K(x, t) (x, t ∈ Rd) functions in the RKHS HK

can be approximated in the HK norm by linear combinations
∑n

i=1 ciK(x, ti). We
show here that the error bounds can be made uniform in the L∞ norm provided the
kernel is modified by possible weight functions, and the L2 operator K is replaced
by K1/2, its operator square root K (which in some cases equals K). Though
our results are non-constructive, the existence of such an approximation requires a
numerical determination of {ti}n

i=1 using optimization techniques, a problem which
remains to be solved.

In Section 2 we review some basic SLT concepts and include the seminal VC
bound theorem, needed to prove our main result. In Section 3, we give a modified
version of Girosi’s result. Section 4 contains our main results involving uniform non-
asymptotic bounds for real and complex RKHS. Letting 〈·, ·〉 denote inner product,
our results distinguish between two sub-cases:
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• 〈·, ·〉RKHS = 〈·, ·〉L2 ; and
• 〈·, ·〉RKHS 6= 〈·, ·〉L2 .

In the first case the reproducing kernel operator K is an L2 projection onto its closed
subspace HK , e.g., a wavelet space, spline space, or space of bandlimited functions,
and K = K1/2. In the second case, (for example in the case of a Gaussian kernel),
K maps onto a non-closed subspace of L2, which we will assume to be dense in L2.

2. SLT Background and Definitions

The goal in a standard SLT paradigm is to find an unknown function f : X → Y
from random samples {(xi, yi)}n

i=1, where X ⊂ Rd, Y ⊂ R. As there are noise
and other uncertainties, we do not expect f(xi) = yi, but rather that they are
approximately equal. Thus at best we can only find an approximation to the
predictor function f . In SLT this approximation is usually realized by minimizing
some loss function which measures the error between yi and a predicted value f(xi).

To be precise, let X ⊂ Rd and Y ⊂ R1. Assume X×Y is sampled n times
under an unknown probability distribution P (x, y), and denote the data set by
{(xi, yi) ∈ X×Y }n

i=1. Given a hypothesis space H of possible functions relating x
and y, the problem is to find a predictor f : X → Y in H such that when x ∈ X is
given, f(x) predicts a value for y optimally.

Following Girosi [4], we use Vapnik’s probabilistic bound approach involving the
VC dimension [16, 10]. For f ∈ H and z = (x, y), let the loss function

V (y, f(x)) = V (f, z)

measure the error between y and its prediction f(x). Two examples are V (f, z) =
|y−f(x)|p, 1 ≤ p < ∞ and the {0, 1}-valued function V (f, z) = 1−χ[−1,1](y−f(x)).

For f ∈ H, the expected risk R[f ] is defined as the average of the loss function
V , namely

Expected Risk = R[f ] =
∫

V (f, z)P (z)dz,(1)

where the probability measure P (z) = P (x, y) is unknown. Thus the estimator
function

(2) f∗ = arg
{

min
f∈H

R[f ]
}

cannot be found directly.
Instead the data set {(xi, yi) ∈ X×Y }n

i=1 is used to find an information-based
approximation of the expected risk, called the empirical risk. For f ∈ Hk ⊂ H
define

(3) Empirical Risk = Remp[f ;n] =
1
n

n∑

i=1

V (f, zi).

A difficulty in finding a minimizer of the expected risk using the empirical risk
arises from the possible existence of many minimizing functions. Moreover, it is
possible to pick an f which often has small empirical risk, but large expected risk.
An SLT approach to resolving this is to find uniform probabilistic bounds on the
difference between the expected and empirical risks.

In applications, H is often too large and so the empirical risk is successively
minimized on a nested sequence of increasing subspaces H0 ⊂ H1 ⊂ · · · ⊂ Hk ⊂
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· · · ⊂ H, where increasing k reflects increasing “capacity” of Hk. Standard examples
of spaces Hk include splines with k nodes, and degree k trigonometric polynomials
in d variables. The VC bound theorem (below) is stated in terms of Hk.

Vapnik’s empirical risk minimization principle (ERMP) is an approach which
gives an approximation in Hk to the minimizer f∗ in (2) by first finding a sequence
of “locally” minimizing approximations fk,n ∈ Hk (with n the number of data
points) defined by

(4) fk,n = arg
{

min
fεHk

Remp[f ; n]
}

.

As n →∞, we hope that fk,n ∈ Hk converges to

(5) fk = arg
{

min
fεHk

R[f ]
}

.

and

(6) lim
n→∞

Remp[fk,n;n] = lim
n→∞

R[fk,n] = R[fk].

Seminal work of Vapnik and Chervonenkis ([17], Theorem 2.1) shows that, for
bounded R[f ], (6) is satisfied in Hk when the following uniform convergence in
probability holds for all ε > 0 :

(7) lim
n→∞

P

{
sup

f∈Hk

(
R[f ]−Remp[f ; n]

)
> ε

}
= 0.

This in turn leads to uniform non-asymptotic VC bounds which are given in terms
of the VC dimension of the class of empirical risks. We now give a definition of
VC-dimension.

Definition 1. The VC dimension of a family H of functions on a space X is the
maximum number h of points {ti}h

i=1 which can be separated into two classes in all
possible ways, using classes of the form:

• f(ti)− α ≥ 0, and
• f(ti)− α ≤ 0

as f ∈ H and the parameter α ∈ R vary.
Given a kernel K(x, t) the VC dimension of a family of functions K(x, t) (in

the variable t and parameter x) is the above-defined VC dimension of the family
H = {K(x, t)}x∈Rd , where x parameterizes the family H.

Examples of function classes of VC-dimension d + 1 include:
• characteristic functions of half-spaces on Rd

• characteristic functions of d-dimensional balls on Rd

• Gaussian kernels on Rd [4].
The following well-known theorem of Vapnik and Chervonenkis, which gives

probabilistic estimates of integrals by finite sums, is needed in the proofs of [4] as
well as here.

Theorem 1. (VC Bound Theorem [17]). Let V (f, z), z = (x, y), satisfy A ≤
V (f, z) ≤ B for f in a hypothesis space of functions Hk. Let h be the VC dimension
of {V (f, z)}f∈Hk

and n be the number of data points zi (chosen with respect to the
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probability distribution P (z) = P (x, y)). Then for any 0 < η < 1, the following
inequality holds simultaneously for all f ∈ Hk, with probability at least 1− η:

(8)
∣∣∣R[f ]−Remp[f ; n]

∣∣∣ ≤ (B −A)

√
h ln 2en

h − ln η
4

n
.

Note above e denotes the base of the natural logarithm.

3. Modifications of Girosi’s Results

The so-called curse of dimensionality occurs when a problem’s complexity grows
exponentially with dimension d. Typically, for a function of smoothness s in di-
mension d, the number of parameters n needed to achieve an approximation error
smaller than some positive ε is

n ∝
(

1
ε

)d/s

.

Letting s change with d improves the error, which is O(n−s/d).
We follow Girosi [4] in reinterpreting SLT notions as approximation theory (AT)

concepts as follows:

SLT Notation AT Notation
R [risk function] f
f x
z t
V [loss function] J [kernel]
P [probability distribution] λ [measure]
Hk [approximation space] Rd

Under these replacements the expected risk of SLT

R[f ] =
∫

V (y, f(x))P (x, y)dxdy =
∫

V (f, z)P (z)dz

becomes in AT

(9) f(x) =
∫

J(x, t)λ(t)dt, x, t ∈ Rd.

Then the empirical risk in AT has the form

(10) Remp[f ] =
1
n

n∑

i=1

J(x, ti).

Girosi [4] used the VC bound theorem of Vapnik and Chervonenkis to estimate
integrals of the form (9) using sums like (10) when λ(t) ∈ L1(Rd). We will give
a modification of this result applied to functions of the form (9) for any bounded
kernel.

Proposition 2 (Girosi). Let f be represented as an integral in the form (9), with
λ ∈ L1(Rd). If the kernel J satisfies A ≤ J(x, t) ≤ B, x, t ∈ Rd, the following
probabilistic error bound holds with probability 1−η for a sample of n points {ti}n

i=1

taken with respect to the probability density |λ(x)|dx (normalized to unit L1 norm
if necessary):
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(11)

∥∥∥∥∥f(x)− 1
n

n∑

i=1

sgn(λ(ti))J(x, ti)‖λ‖L1

∥∥∥∥∥
L∞

≤ 4τ‖λ‖L1

√
h ln 2en

h − ln η
4

n
.

where τ = B −A.

The term 4τ follows from the fact that if |J(x, t)| ≤ τ , then B − A = 2τ . The
additional factor of 2 in the term 4τ is a consequence of writing the coefficients
sgn(λ(ti))ci = c+

i − c−i , the sum of their negative and positive parts (i.e., c+ =
sup(c, 0) and c− = sup(−c, 0)).

Proposition 2 leads to the following corollary.

Corollary 3. Under the assumptions of Proposition 2, for every ε > 0 there exists
a sample {ti}n

i=1 ∈ Rd such that

(12)
∥∥∥∥f(x)− 1

n

n∑

i=1

sgn(λ(ti))J(x, ti)‖λ‖L1

∥∥∥∥
∞
≤ 4τ‖λ‖L1

√
h ln 2en

h + ln 4
n

+ ε.

Proof. Letting η ↑ 1, we see that the right hand side of (11) approaches

4τ‖λ‖L1

√
h ln 2en

h + ln 4
n

from above. That is for any ε > 0 we can find an η < 1 such that

4τ‖λ‖L1

√
h ln 2en

h − ln η
4

n
≤ 4τ‖λ‖L1

√
h ln 2en

h + ln 4
n

+ ε.

Thus for any ε > 0 there exists a sample T = {ti}n
i=1 such that the result holds. ¤

Remarks:

• In SLT for learning to take place the number of data points n must be
greater than the VC-dimension h.

• For kernels which are uniformly continuous in t and the parameter x (which
occurs in many RKHS), equation (12) holds for ε = 0. This can be shown
through the existence of a limiting data set t1, . . . , tk for which the limiting
value ε = 0 holds in (12). For a proof for generalized Sobolev spaces Lp

s(Rd)
see ([8], Corollary 3).

4. Main Theorem - Girosi’s Result for RKHS

A real RKHS HK on a space X can be defined [18] to be a Hilbert space of
real valued functions on X with the property that, for each x ∈ Rd, the pointwise
evaluation functional Kx which associates f with f(x), Kx → f(x) is a bounded
linear functional.

Letting T be the transpose, we recall that a symmetric n× n matrix A is:

• positive semi-definite if xT Ax ≥ 0; and
• positive definite if xT Ax > 0.

for all x ∈ Rn. Our somewhat more restrictive definition follows [3, 21].
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Definition 2. Let K : X ×X → R be continuous, symmetric and positive semi-
definite, meaning that for any finite set of distinct points {xi}n

i=1 ⊂ X, the matrix
(K(xi,xj))n

i,j=1 is positive semi-definite. It is called positive definite if the matrix
(K(xi,xj))n

i,j=1 is positive definite. The reproducing kernel Hilbert space [RKHS]
HK associated with the kernel K is defined to be the closure of the algebraic span of
the set of functions {Kx := K(x, ·)|x ∈ X} with the inner product 〈·, ·〉HK

satisfying

‖
n∑

i=1

ciKxi
‖2HK

=
〈 n∑

i=1

ciKxi
,

n∑

i=1

ciKxi

〉
HK

=
n∑

i,j=1

ciK(xi,xj)cj .

The reproducing kernel property is given by

(13)
〈
Kx, f

〉
HK

= f(x) ∀ x ∈ X, f ∈ HK .

We note some well known RKHS facts:

• Any positive semi-definite K(x, t) can be used to construct a RKHS HK

associated with it.
• Any convolution kernel K(x, t) = K(x − t) with a non-negative Fourier

transform is a reproducing kernel and is associated with a RKHS.

In addition to the standard situation in which HK is a dense subset of L2, we
will also consider another case of interest in which HK is a proper closed subspace
of L2, and the operator K corresponding to the kernel K(·, ·) is the orthogonal
projection from L2 onto HK . Here we will loosen the restriction on continuity of
K(·, ·) in order to admit some cases of interest. We will use the fact that in both
cases an f ∈ HK can be expressed as a Lebesgue integral against the kernel.

We assume for our first main result that K(x, t) is positive definite and HK is
dense in L2(Rd) which occurs in most applications (see examples for Theorem 4).
Note that K(·, t) is in L2 for all t.

Define K : L2 → L2 to be the self-adjoint closure of the operator

(14) Kf =
∫

Rd

K(x, t)f(t)dt,

initially defined on the space of compactly supported infinitely differentiable func-
tions. We assume the self-adjoint operator K1/2 has a kernel K1/2(x, t) with
K1/2(·, t) ∈ L2 for all t. Consider the self-adjoint operator K−1/2 and note that the
function K(·, t) ∈ DomL2(K−1/2). To verify this we show K(·, t) ∈ RanL2(K1/2)
which follows from

(15) K1/2[K1/2(·, t)] =
∫

K1/2(·,y)K1/2(y, t)dy = K(·, t)

(the distinction between the operator K1/2 and its kernel K1/2(x, t) above is clear).
For an alternative proof see [3].

Define the dense subset H̃K ⊂ HK by

H̃K =

{
n∑

i=1

ciK(x, ti) : n ∈ N, ci ∈ R
}

.

Now we show for f, g ∈ HK ,

(16) 〈f, g〉HK
= 〈K−1/2f, K−1/2g〉L2(Rd).
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Note that if f =
∑n

i=1 ciK(x, ti), g =
∑n

j=1 djK(x, tj) ∈ H̃K , then

〈f, g〉HK =
n∑

i,j=1

cidj〈K(x, ti), K(x, tj)〉HK =
n∑

i,j=1

cidjK(ti, tj).

In addition
〈K−1/2f, K−1/2g〉L2(Rd)

=
n∑

i,j=1

cidj〈K−1/2K(x, ti),K−1/2K(x, tj)〉L2(Rd) =
n∑

i,j=1

cidjK(ti, tj),

where
K−1/2K(·, t) = K1/2(·, t)

(note we have used (15)).
Since H̃K is dense in HK , which is dense in L2(Rd), we conclude H̃K is also

dense in L2(Rd). Since K−1/2 is closed, we form the completion of the space
H̃K on both sides of (16) (with respect to each inner product), concluding that
HK = DomL2K−1/2 (for a more detailed argument, see [3, Section III.3].

Therefore for f ∈ HK , we have K−1/2f(x) ∈ L2(Rd),

f(x) = 〈(K(x, ·), f(·)〉HK
= 〈(K−1/2)K(x, ·), (K−1/2)f(·)〉L2

(17) =
∫

Rd

K1/2(x, t)(K−1/2f)(t)dt,

where, by the above discussion, the integral converges in L2(Rd).
Our main results give non-asymptotic uniform error bounds for approximating

functions in a RKHS. Such a bound is a function of the number of data points
used and the V C dimension, i.e., the richness of the space. What is done here
is a generalization of Girosi’s results for RKHS, which are inner product spaces;
we note that Girosi’s results for generalized L1 Sobolev spaces do not apply to
RKHS. However, the usual assumption that the reproducing kernel K is positive
definite and continuous excludes some interesting cases. The latter are considered
in Proposition 5 and Corollary 6.

We recall that a weighted L∞ norm is defined by

‖f‖L∞,a(x) = ess supx|f(x)a(x)|.
Theorem 4. Given an L2(Rd)−dense RKHS HK with a positive definite repro-
ducing kernel K(x, t), let K1/2(x, t) be in L2(Rd). Assume there exist positive
functions g(t) and k(x) bounded away from 0 with g ∈ L2(Rd) such that

(18) ess supx,t

∣∣∣∣
K1/2(x, t)
g(t)k(x)

∣∣∣∣ ≤ τ.

Let h be the VC dimension of
K1/2(x, t)
g(t)k(x)

in the parameter x and the variable t.

Then for every f ∈ HK and every ε > 0 there exist {t1, . . . , tn} ⊂ Rd, and n
coefficients ci = sgn(K−1/2f)(ti)) = ±1, such that the weighted L∞ norm

∥∥∥∥∥f(x)− 1
n

n∑

i=1

ci‖(K−1/2f)g‖L1
K1/2(x, ti)

g(ti)

∥∥∥∥∥
L∞,1/k(x)
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(19) ≤ 4τ‖f‖HK
‖g‖L2

√
h ln 2en

h + ln 4
n

+ ε.

Proof. For f ∈ HK and positive g ∈ L2(Rd), we have (K−1/2f)(x)g(t) ∈ L1 by
Hölder’s inequality. Thus recalling (17)

f(x)
k(x)

=
∫

K1/2(x, t)
g(t)k(x)

(K−1/2f)(t)g(t)dt.

Referring to Proposition 2 and equation (12) define

J(x, t) =
K1/2(x, t)
g(t)k(x)

and λ(t) = (K−1/2f)(t)g(t).

It now follows by Corollary 3 that for every ε > 0 there exist {ti}n
i=1 such that

∥∥∥∥∥
f(x)
k(x)

− 1
n

n∑

i=1

K1/2(x, ti)
g(ti)k(x)

‖(K−1/2f)(t)g(t)‖L1sgn((K−1/2f)(ti)g(ti))

∥∥∥∥∥
L∞

≤ ‖K−1/2f‖L2‖g‖L2

∥∥∥∥
∫

K1/2(x, t)
g(t)k(x)

(K−1/2f)(t)g(t)
‖(K−1/2f)(t)g(t)‖L1

dt

− 1
n

n∑

i=1

K1/2(x, ti)
g(ti)k(x)

sgn((K−1/2f)(ti)g(ti))

∥∥∥∥∥
L∞

≤ 4τ‖f‖HK
‖g‖L2

√
h ln 2en

h + ln 4
n

+ ε

as ‖f‖HK = ‖K−1/2f‖L2 . ¤

Examples of Theorem 4 for real positive definite reproducing kernels include:

• The Gaussian kernel e
−‖x−t‖2

2σ2 on L2(Rd).
• The Bessel potential kernel associated with a generalized Sobolev space L2

s,
given by

(20) K1/2(x, t) =
(4π)−s/2

Γ( s
2 )

∫ ∞

0

exp
(
−π

σ
|x|2

)
exp

(
− σ

4π

)
σ(s−d−2)/2dσ

has Fourier transform (FT) (1 + |ξ|2)−s/2 [16]. To find the reproducing
kernel K(x, t) square the Fourier transform giving (1 + |ξ|2)−s, and take
the inverse FT yielding K(x, t), obtainable by substituting 2s for s in (20).

• Following [18], denote by W 0
m the RKHS of functions on [0, 1] which have m

absolutely continuous derivatives in L2, with f (ν)(0) = 0, ν = 0, 1, ...,m−1
and with square norm ‖f‖2 =

∫ 1

0
(f (m)(t))2dt. Define the Green’s function

Gm(x, t) =
(x−t)m−1

+
(m−1)! for the problem Dmf = g, f ∈ W 0

m. For each f ∈ W0
m,

f(t) =
∫ 1

0
Gm(t, u)f (m)(u)du. The reproducing kernel is

(21) R(t, s) =
∫ 1

0

Gm(t, u)Gm(s, u)du = Rt(s)
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with

(22) 〈f,Rt〉HK
=

∫ 1

0

Gm(t, u)f (m)(u)du = f(t).

For these reproducing kernel spaces with L2 ⊂ L1, we can choose g(t) =
k(x) = 1.

For the purpose of including spaces of band-limited functions, wavelet and spline
spaces, we now consider an important situation in which K is not positive definite,
(nor in some cases continuous). We assume that K(x, t) is bounded, positive semi-
definite, and that HK is a closed subspace of L2 with inner product inherited from
L2, so that 〈f, g〉HK

= 〈f, g〉L2 . In this case, we have for f ∈ HK ,

f(x) = 〈f(·),K(x, ·)〉HK
= 〈f, g〉L2 =

∫

Rd

K(x, t)f(t)d(t).(23)

We can show as in Theorem 4 the following.

Proposition 5. Assume K is bounded and positive semi-definite, and that HK

inherits the L2 inner product. Assume that there exist positive functions g(t) and
k(x), bounded away from 0, with g ∈ L2(Rd) such that

(24) ess supx,t

∣∣∣∣
K(x, t)
g(t)k(x)

∣∣∣∣ ≤ τ.

Let h be the VC dimension of
K(x, t)
g(t)k(x)

in the parameter x and the variable t. Then

for every f ∈ HK and every ε > 0 there exist {t1, . . . , tn} ⊂ Rd, and n coefficients
ci = sgn(f(ti)) = ±1, such that the weighted L∞ norm∥∥∥∥∥f(x)− 1

n

n∑

i=1

ci‖fg‖L1
K(x, ti)

g(ti)

∥∥∥∥∥
L∞,1/k(x)

(25) ≤ 4τ‖f‖L2‖g‖L2

√
h ln 2en

h + ln 4
n

+ ε.

Proof. Note that in this case the operator K is the orthogonal projection onto the
closed subspace HK ⊂ L2, so that K1/2 = K. Our conclusion follows in the same
way as that of Theorem 4 by using equation (23), and replacing K1/2 by K and
K−1/2f by f in the argument of Theorem 4. ¤

Examples of Proposition 5 for real RKHS include the sinc kernel for bandlimited
L2 functions; and projection reproducing kernels on spaces of splines, frames, and
wavelets ([2, 6, 19]). Here we consider the Haar case on Rd.

Let

(26) φd(x) =
{

1 x ∈ [0, 1]d

0 otherwise

denote the Haar scaling function in Rd (i.e., a 0th order B-spline). Then at the
scale n = 0, the corresponding family of wavelets consists of products of the form
ψλ

d (x) =
∏d

i=1 ηi(xi), where ηi(xi) is either

(27) φ(xi) =
{

1 xi ∈ [0, 1]
0 otherwise or ψ(xi) =





1 xi ∈ [0, 1/2]
−1 xi ∈ (1/2, 1]
0 otherwise
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Thus the total number of basic wavelets is 2d − 1. We define the homogeneous
Sobolev space for s ∈ R by

L2
hom,s =

{
f ∈ L2(Rd)

∣∣∣‖f‖L2
hom,s

=
∥∥∥|ω|sf̂(ω)

∥∥∥
L2

< ∞
}

,

where f̂ denotes the Fourier transform of f . Defining the RKHS V0 = {φ(2mx −
k}k∈Z, we have a reproducing kernel

K(x, t) =
∑

k∈Z
φ(2mx− k)φ(2mt− k),

for V0; note in this case that K(x, t) = K1/2(x, t). Assume now that f(x) ∈
L2

s(Rd), d
2 < s < d

2 + 1. Then using Proposition 5 we can show that there exists a
positive integer l ≤ m and an approximation of the form

∑l
i=1 ciφd(2nx−ki), ki ∈

Zd so that for any fixed r > d/4,
∥∥∥∥∥f(x)−

l∑

i=1

ciφd(2nx− ki)

∥∥∥∥∥
L∞,(1+|x|2)−r

is bounded above by a sum of two error bounds.
Specifically

∥∥∥∥∥f(x)−
l∑

i=1

ciφd(2nx− ki)

∥∥∥∥∥
L∞,(1+|x|2)−r

(28) ≤ 2d 2−(n+1)(s−d/2)

1− 2(d/2−s)
‖f‖L2

s
supλ‖ψλ

d‖L2
hom,−s

+ 4τ‖g‖L2‖f‖L2

√
2 ln em + ln 4

m
.

where

ci =
±2nd

l

∥∥∥∥
fn

(1 + |t|2)r

∥∥∥∥
L2

(1 + |ti|2)r

for some choice of ti ∈ Rd, g(t) = (1+ |t|2)−r, τ = 2nd(1+2−2nd)r, and fn denotes
the projection of f onto Vn. (For proofs see [8].)

The first term in (28) is a standard error bound [7] for the difference between a
function and its best approximation fm (which itself is generally an infinite sum)
in the scaling space Vm. The second term in (28) allows the infinite sum defin-
ing fn to be replaced by a finite one with l terms, with an additional cost of

4τ‖g‖ ‖f‖
√

2 ln en+ln 4
n for an appropriate L2 function g. In this case the VC di-

mension of the family

F = {K(x, t)}x∈Rd = {2mdφd(2mt− k)}k∈Zd

(in the parameter k and the variable t) is h = 2.
The following corollary for a positive semi-definite complex kernel is immediate

from Proposition 5 with appropriate modification of the constants. That is, the
results in Proposition 5 remain valid when the space Rd is replaced with Cd with C
the complex numbers. In the case when the kernel and the function are complex,
the constant 4τ in the bound of Theorem 4 is replaced by 8

√
2τ and ln 4 by ln 16.

Corollary 6. Under the assumptions of Proposition 5, let f be in a complex RKHS
HK with the reproducing projection kernel K(x, t) = K1/2(x, t) with x, t ∈ D ⊂ Cd.
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Let the positive functions g(t), k(x), g ∈ L2(Cd), bounded away from 0, be such
that

ess supx,t

∣∣∣∣
K(x, t)
g(t)k(x)

∣∣∣∣ ≤ τ

Let h be the VC dimension of the family

K(x, t)
g(t)k(x)

in the parameter x and variable t on D, i.e., the VC dimension of the real together
with the imaginary parts of this function family on D. Then for every f ∈ HK

and every ε > 0 there exist {t1, . . . , tn} and n coefficients cj = aj + ibj (with
aj , bj = 0,±1) such that the weighted L∞ norm

∥∥∥∥∥f(x)− 1
n

n∑

i=1

ci‖fg‖L1
K(x, ti)

g(ti)

∥∥∥∥∥
L∞,1/k(x)

≤ 8
√

2τ‖f‖L2‖g‖L2

√
h ln 2en

h + ln 16
n

+ ε.

Proof. As the kernel and function are complex the constant 4τ must be replaced
by 2

√
2 times 4τ and the term ln 4 is replaced by ln 16. This follows as the above

theorem is used for the real and imaginary parts (each of which consists of two
integrals, since f has two components) separately, and the constant η is allowed to
approach 1

4 instead of 1, since we wish in this case to have a non- vanishing proba-
bility that the real and imaginary approximations (i.e. four integrals all together)
simultaneously approximate the function f(z). ¤

The corollary applies to the projection kernel onto the Haar scaling space in
complex L2(Rd) [8]; the sinc kernel for the Paley-Weiner space; the Szegö kernel
for the Hardy space; and the Bergman kernel for the space of all functions f that
are analytic in the open unit disk and have finite L2 norm on the open unit disk
[20]. We note that the VC dimensions of these kernels are unknown.

Remark: We remark that if the kernels K1/2(x,ti)
g(ti)k(x) of Theorem 4 and Proposition

5 (with K1/2(x, t) = K(x, t)) are uniformly continuous in t and the parameter x,
then the bounds in this paper hold with ε = 0 [see proof in [8], Corollary 3]. Note
that the uniform continuity condition is satisfied if K1/2 is uniformly continuous in
t, g is continuous and g, k are bounded away from zero.

5. Conclusion

We have shown here that there exists a set of points ti in the domain of a
reproducing kernel Hilbert space HK at which an f ∈ HK can be approximated
as combination of its values f(ti). We conclude by restating that underlying the
above approximation results is the important and unsolved optimization problem
of finding approximations to the vectors {ti}i that yield non-asymptotic uniform
error bounds given in (19) and (25).
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