## **Bayesian Distributions: Prior and Posterior**

We will discuss the details of the derivation of equation (8.27) as a brief summary of the Bayesian approach to statistics.

The probability model is that, for a given parameter  $\beta$  the distribution of a random dataset  $\mathbf{Z} = \{\mathbf{z}_i\} = \{x_i, y_i\}_{i=1}^N$  (  $x_i$  are considered fixed) is

$$y_i = f(x_i) + \epsilon_i = \sum_{j=1}^p \beta_j h_j(x_i) + \epsilon_j = \mathbf{h}^T(x_i)\beta + \epsilon_i$$
,

where  $\epsilon_i$  are iid  $N(0, \sigma^2)$  random variables and

$$\mathbf{h}^{T}(x) = (h_1(x), ..., h_p(x)),$$

with the right side consisting of the spline basis elements. Thus given  $\beta$  (and the fixed location x), the probability distribution of  $y_i$  is

$$(y_i|\,eta,x_i)\sim N(\mathbf{h}^T(x_i)eta,\sigma^2$$
 ,

so that

$$P(y_i|eta,x_i) = \, rac{1}{(2\pi)^{1/2}\sigma} \, e^{-(y_i - \mathbf{h}^T(x_i)eta^2/(2\sigma^2)}.$$

Note that conditioning on  $x_i$  at the end means only that we are treating the  $x_i$  as fixed in the calculation.

The logic is essentially that we are assuming a model for the unknown parameter  $\beta$  as having a probability distribution. Before we see any data in the dataset  $\mathbf{Z} = \{\mathbf{z}_i\}_{i=1}^N = \{(\mathbf{x}_i, y_i)\}_{i=1}^n$  only our prior knowledge can give us an idea of this distribution for  $\beta$ , which is therefore called the *prior distribution*. In this case we give a relatively naïve prior where we do not assume too much by assuming that

$$\beta \sim N(0, \Sigma),$$
 (1)

so that  $P(\beta)=\frac{1}{(2\pi)^{p/2}|\Sigma|^{1/2}}\,e^{-\beta^T\Sigma\beta/2}$ , where  $\Sigma$  is the prior covariance matrix. We do not include  $\tau$  here, but for now absorb it into  $\Sigma$  - we can always at the end replace  $\Sigma$  by  $\tau\Sigma$ .

The posterior distribution for  $\beta$  (i.e., our distribution for  $\beta$  given the new information in **Z**) is

$$P(\beta|\mathbf{Z}) = \frac{P(\mathbf{Z}|\beta)P(\beta)}{P(\mathbf{Z})},$$

where  $P(\beta|\mathbf{Z})$  denotes the normal density function of  $\beta$  conditioned on knowing  $\mathbf{Z}$ . First note that for a given  $\beta$  we can compute

$$P(\mathbf{Z}|\beta) = P(\{x_i, y_i)\}_{i=1}^N |\beta) = \prod_{j=1}^N P(x_i, y_i) |\beta) = \prod_{j=1}^{N\beta/} P(y_i|x_i, \beta),$$

$$= \frac{1}{(2\pi)^{N/2} \sigma^N} e^{-\sum\limits_{i=1}^{N} (y_i - \mathbf{h}^T(x_i)\beta)^2/(2\sigma^2)} = \frac{1}{(2\pi)^{N/2} \sigma^N} e^{-(y - \mathbf{H}\beta)^2/(2\sigma^2)},$$

with

$$\mathbf{H}_{ij} = h_j(x_i).$$

Thus the posterior density function of  $\beta$  (i.e. its new probability density given the information in the dataset  $\mathbf{Z}$ ) is

$$P(\beta|\mathbf{Z}) = \frac{P(\mathbf{Z}|\beta)P(\beta)}{P(\mathbf{Z})} = \frac{1}{P(\mathbf{Z})} \cdot \frac{1}{(2\pi)^{N/2}\sigma^N} e^{-(y-\mathbf{H}\beta)^2/(2\sigma^{\beta^2})} \cdot \frac{1}{(2\pi)^{p/2}|\Sigma|^{1/2}} e^{-\beta^T \Sigma^{-1}\beta/2}$$

$$= \frac{1}{P(\mathbf{Z})} \cdot \frac{1}{(2\pi)^{(N+p)/2}|\Sigma|^{1/2}\sigma^N} e^{-(y-\mathbf{H}\beta)^2/(2\sigma^2) - \beta^T \Sigma^{-1}\beta/2}$$

We now rearrange the exponent as

$$(\mathbf{y} - \mathbf{H}\beta)^{2}/(2\sigma^{2}) + \beta^{T}\Sigma^{-1}\beta/2 = \frac{1}{2\sigma^{2}}[\mathbf{y}^{T}\mathbf{y} - 2\mathbf{y}^{T}\mathbf{H}\beta + (\mathbf{H}\beta)^{T}(\mathbf{H}\beta)] + \beta^{T}\Sigma^{-1}\beta/2$$

$$= (\mathbf{y}^{T}\mathbf{y} - 2\mathbf{y}^{T}\mathbf{H}\beta)\frac{1}{2\sigma^{2}} + \beta^{T}(\mathbf{H}^{T}\mathbf{H}/(2\sigma^{2}) + \Sigma^{-1}/2)\beta$$

$$= \mathbf{y}^{T}\mathbf{y}\frac{1}{2\sigma^{2}} + \beta^{T}(\mathbf{H}^{T}\mathbf{H}/(2\sigma^{2}) + \Sigma^{-1}/2)\beta - 2\mathbf{y}^{T}\mathbf{H}\beta\frac{1}{2\sigma^{2}}$$

$$= A + \beta^{T}\mathbf{B}\beta - \mathbf{C}^{T}\beta$$

$$= A - (\mathbf{B}^{-1}\mathbf{C})^{T}\mathbf{B}(\mathbf{B}^{-1}\mathbf{C})/4 + [\beta^{T}\mathbf{B}\beta - \mathbf{C}^{T}\beta + (\mathbf{B}^{-1}\mathbf{C})^{T}\mathbf{B}(\mathbf{B}^{-1}\mathbf{C})/4]$$

$$= A - (\mathbf{B}^{-1}\mathbf{C})^{T}\mathbf{B}(\mathbf{B}^{-1}\mathbf{C})/4 + [\beta - \mathbf{B}^{-1}\mathbf{C}/2]^{T}\mathbf{B}[\beta - \mathbf{B}^{-1}\mathbf{C}/2],$$

where we have defined  $A = \mathbf{y}^T \mathbf{y}/(2\sigma^2)$ ,  $\mathbf{B} = \mathbf{H}^T \mathbf{H}/(2\sigma^2) + \Sigma^{-1}/2$ , and  $\mathbf{C}^T = 2\mathbf{y}^T \mathbf{H}/(2\sigma^2)$ . Note that  $\mathbf{B}^T = \mathbf{B}$ , and  $\mathbf{C}^T \beta = \beta^T \mathbf{C}$ , given that  $\beta$  and  $\mathbf{C}$  are vectors. Note that in the last two lines we have just completed the square in the variable  $\beta$ .

Thus

$$P\left(\beta|\mathbf{Z}\right) = \underbrace{\frac{1}{P(\mathbf{Z})} \cdot \frac{1}{(2\pi)^{(N+p)/2} |\Sigma|^{-1/2} \sigma^{N}} e^{-A + (\mathbf{B}^{-1}\mathbf{C})^{T} \mathbf{B}(\mathbf{B}^{-1}C)/4} e^{-(\beta - \mathbf{B}^{-1}\mathbf{C}/2)^{T} \mathbf{B}(\beta - \mathbf{B}^{-1}\mathbf{C}/2)}.(2)}_{\equiv D = \text{Normalization constant (no dependence on } \beta)}$$

Notice that since the distribution must integrate to 1, the terms before the last exponential (none of which involve  $\beta$ ) must just form the proper normalization constant (so the distribution integrates to 1 in  $\beta$ ), and the above is just a normal distribution. By matching its form with the usual density  $e^{-(\beta-\mu)^T \sum_{\rm fin}^{-1} (\beta-\mu)/2}$  for the normal  $N(\mu, \Sigma)$  (without the normalization constant) we see that the mean for  $\beta$  must be

$$\mu = \mathbb{E}(\beta | \mathbf{Z}) = \mathbf{B}^{-1} \mathbf{C}/2 = (\mathbf{H}^T \mathbf{H}/(2\sigma^2) + \Sigma^{-1} \mathbf{H}^T \mathbf{y}/(2\sigma^2)$$
$$= (\mathbf{H}^T \mathbf{H} + \Sigma^{-1} \sigma^2)^{-1} \mathbf{H}^T \mathbf{v}.$$

The covariance matrix  $\Sigma_{\text{fin}}$  of  $\beta$  is

$$\Sigma_{\text{fin}} \equiv \mathbb{V}(\beta | \mathbf{Z}),$$

and by matching to (2) must be given by  $\Sigma_{\rm fin}/2={\bf B}$ , so that

$$\Sigma_{\text{fin}} = (2\mathbf{B})^{-1} = \frac{1}{2} (\mathbf{H}^T \mathbf{H} / (2\sigma^2) + \Sigma^{-1} / 2)^{-1} = (\mathbf{H}^T \mathbf{H} + \sigma^2 \Sigma^{-1})^{-1} \sigma^2.$$

Finally, again including the unnecessary but convenient parameter as part of the covariance (by replacing  $\Sigma$  by  $\tau\Sigma$ ), we have

$$\mu = E(\beta | \mathbf{Z}) = (\mathbf{H}^T \mathbf{H} + \Sigma^{-1} \sigma^2 / \tau)^{-1} \mathbf{H}^T \mathbf{y}$$
  
$$\Sigma_{\text{fin}} = (\mathbf{H}^T \mathbf{H} + \sigma^2 \Sigma^{-1} / \tau)^{-1} \sigma^2.$$