Vector space properties
MA 751
Part 1

Linear Algebra, functional analysis

This material is from basic linear algebra as a reference -
will not go over in detail in class.

1. Preliminaries:

Recall: R = {real numbers}; R3 = {all triples of real
numbers}, etc.



Examples
Definition (part 1): A vector space is a set of objects V on
which addition and scalar multiplication are defined.
Precisely if vi,vo, € V we define

Vi + Vo

and if v € V we define cv for allc € R. Elements of V' are
called vectors.

[Additional required properties are below].
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Examples
Geometric representation of vector v:

v = (vi,v9,v3) = arrow from origin to (v vs, v3) :

P
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Examples

Addition:
(1,2,3) + (2,1, —1) = (3,3,2)

Scalar multiplication:

—2(1,2,3) = (—2, —4, — 6)



Vector space properties
Properties:

l.u+v=v+u
2. U+ (V+w)=(u+v)+w
etc -



Vector space properties
3. There exists a unique vector 0 (= (0,0,0)) such that
v 4+ 0 = v for all vectors v.
4. For each v €V, there exists a unique element —v € V
suchthat v+ —v =20

5. for u,veV and ceR c(U+V)=cu+cv

6. for c,d e Rand ueV,(c+d)u=cu+du

7. ¢(du) = (cd)u forc,d, u as above

8. forueV, 1-u=u

Remark on 4: clearifv = (vy,...,v,) then —v = (—vy, ..., —v,)

in special case V = R".



Vector space properties
Def. (part Il - full definition): A vector space is a set of
objects V on which addition and scalar multiplication are
defined with properties 1 - 8 above.



Examples
Ex. 2. R%, e.q. (w1, 9, 23, 24) Viewed geometrically (arrows) or
in terms of vector algebra.

Ex 3:  V = all polynomials of degree < 2 form a vector
space:

V =ay + a1z + asx’



Examples
For example we have for
Vi =34 2x —4x?; Vo =2 —x+ 322
Vq +V2=5+$—$2
3Vi = 9+ 6z — 1222,

Properties 1 - 8 apply, e.g.:
Vi +Vy =Vy+Vy

4(V1 + VQ) = 4v + 4v,.



Examples
Ex 4: V = continuous functions f(z) on [0,7] C R

vy = sinx; vy = 22/10






Examples

Add vectors:
Vi +Vy =sinz + 2%/10
Scalar multiply:
3vy = 3sinx
Check vector properties (1-8) satisfied.
[vector space can be: arrows, polynomials, continuous

functions; need only define addition, scalar mult, and
vector properties (1-8) must hold].



Properties
2. Vector space properties:

Def 1: Given vector space V and vi,vs,...v,, € V, a vector
w is a linear combination (LC) of vy, ...,v,, if

W=cV;+... +c,V,

for some collection {ci,...,c,} C R.



Properties
Ex5 vy = (1,2,3); vo=(2, —1,-1); vg = ( —1,2,1);

w=(-58,T7)

is linear combination of v;:can letc; =1;¢ = —2;¢c3=2
above.



Properties

Ex 6: v; =sinz + 22% vy =sinz — e”; V3 = e*

w = 3sin z + 622 — 2¢” is LC of the v;, since

W = 3Vv; + 0vy — 2v3

Def 2: Given vector space V the collection {vy,vs,...v,} CV
is linearly independent (LI) if nov;is a LC of the others.



Properties
Note: if 9 constants c¢y,...¢, (notall 0) s.t.

cVi+ ... +cp vy, = O,
then say if ¢; # 0,

v = — /v — ... — ¢ /Cruy,

so one vector is a LC of others and so not lin. ind. Can
reverse to show:

Theorem: v;...v, are lin. ind. iff do not exist const. ¢,...,¢,
(some non-zero) s.t.

CiVi+ ... +¢,v, =0.



Properties
Ex 70 vi=(1,2,3); vo = (2, = 1,-1);vs = (—1,2,1)
are LI
Reason: if c¢;vy + coVo + c3vy = 0,

a1(1,2,3) + (2, =1, = 1) + ¢3( — 1,2,1) = (0,0,0)

= c1+2cg—c3=0
261—02+263:0
3c1 —co+c3=0

= solving, ¢, =cy =c3=0.



Properties
Ex 8: Vi = sin x4+ 222 vy = 2sinz — e”; vy =¢e” arelLl
Proof: > ¢;v; = 0 holds only with ¢; all O; plug in several x

values to show this, e.g., set z =0, 7, 7/2 in the equation
> c;v; =0 to obtain 3 separate equations from which it
1

follows all ¢; = 0.

[note also that one of the vectors would have to be a
combination of the other two for all x; plausible that this
cannot happen]



Basis and dimesion
3. Dimension of a vector space:

Given a vector space V
Def 3: We say that the set of vectors S = {vy,...v,} span V

if every vector w € V' can be written as a linear combination
of vectors in S.



Basis and dimesion
Ex 90 v =(1,2,3); v, =(2, —1,1); v3=(—1,2,—-1) span
V =R3. To see this, note that we have to show that for
any vector w = (w;,ws,ws), We can find constants ¢;
such that

C1U1 + CoV9 + Cc3v3 = w.

[Again involves solving a system of equations; see exercises]



Basis and dimesion
Def. 4: The set of vectors S = {vy,...,v,} C V is a basis for
vV if
(i) S spans V (i.e., any vector w € V can be written as a linear
combination of vectors from S), and
(ii) the vectors from S are linearly independent.

Theorem 1. Aset S C V is a basis for V iff every w € V' can
be written uniquely as a linear combination of vectors in S.

Ex 10 vy =(1,2,3); vo=(2, —1,—-1); v3=(—1,2,1) are
a basis for R3.



Basis and dimesion
Every v € R3 can be written as a LC of the v; uniquely.

For example
W= (-37,6)=1-vi—1-Vy+2-vs,

is only LC of the v; giving w.



Basis and dimesion

Ex 11: Vi =sinz + 22%; vy = 2sinz —e%; v3=¢€* are a
basis for the vector space

V = all linear combinations of sinz, 2> and e®.
= {e1sinz + cy 2 + c3e” 1 ¢; € R}.

Note: All bases for vector space V have same number d of
elements.

d = dimension of V.



Vector norms
3. Norm (length) of a vector:

Notation: In R? write

U1
V = <Ul7v23U3> — (%)
U3
Def. 5: Normv = || v || distance from end to origin

=/ |v1|2+ [ |2+|v3]2



Vector norms

Leci




Vector norms
4. Distance between vectors

3 1
Betweenu = (2| andv=| —2
1 1

d=v(@B-1P2+2-(-2)+1-1)2=u-v|



Vector norms
Geometry:




