Orthogonal vectors

MA 751 Part 2

Inner products

1. Inner product (also known as dot product):

In \mathbb{R}^n :

Orthogonal vectors

Inner product of
$$\mathbf{v} = \begin{bmatrix} v_1 \\ v_2 \\ \vdots \\ v_n \end{bmatrix}$$
 and $\mathbf{w} = \begin{bmatrix} w_1 \\ w_2 \\ \vdots \\ w_n \end{bmatrix}$ is

$$v_1w_1 + \ldots + v_nw_n = \sum_{i=1}^n v_iw_i$$

Norm of (real) vector:

$$\sqrt{v_1^2+v_2^2+\ldots+v_n^2}=\sqrt{\sum_{i=1}^n}v_i^2=\|\mathbf{v}\|=\sqrt{\langle\mathbf{v},\mathbf{v}
angle}.$$

2. Inner product, geometric:

3 D:

$$\mathbf{v} \cdot \mathbf{w} = \|\mathbf{v}\| \|\mathbf{w}\| \cos \theta$$

where $\theta =$ angle between **v** and **w**.

Geometry:

$$\mathbf{v} = \begin{bmatrix} 1 \\ 0 \end{bmatrix}; \quad \mathbf{w} = \begin{bmatrix} 1 \\ 1 \end{bmatrix}; \quad \theta = \pi/4,$$

Inner product is: $\mathbf{v} \cdot \mathbf{w} = 1 \cdot 1 + 0 \cdot 1 = 1$

On other hand can use:

$$\|v\|\,\|w\|\cos\,\theta = 1\cdot\sqrt{2}\,\cdot\,\frac{1}{\sqrt{2}} = 1 = \mathbf{v}\cdot\mathbf{w}$$

to get same value.

3. Properties of IP:

Theorem 1: For $\mathbf{u}, \mathbf{v} \in \mathbb{R}^n$,

- (a) $\langle \mathbf{u}, \mathbf{u} \rangle \ge 0$ for all \mathbf{u} ; $\langle \mathbf{u}, \mathbf{u} \rangle = 0$ iff $\mathbf{u} = 0$.
- (a) $\langle \mathbf{u}, \mathbf{u} \rangle \geq 0$ for all $\langle \mathbf{u}, \mathbf{u}, \mathbf{u} \rangle = 0$ iii $\langle \mathbf{u} = 0 \rangle$.
- (or $\langle \mathbf{u}, \mathbf{v} \rangle = \overline{\langle \mathbf{v}, \mathbf{u} \rangle}$ if \mathbf{u}, \mathbf{v} are complex)
- (c) $\langle [\mathbf{u} + \mathbf{v}], \mathbf{w} \rangle = \langle \mathbf{u}, \mathbf{w} \rangle + \langle \mathbf{v}, \mathbf{w} \rangle$
- (d) $\langle \mathbf{u}, c\mathbf{v} \rangle = c \langle \mathbf{u}, \mathbf{v} \rangle$ if c is a real scalar.

Exercise: Verify these properties for $\mathbf{v}, \mathbf{w} \in \mathbb{R}^n$.

Def. 6. v is a *unit vector* if it has length 1

e.g.,
$$\frac{1}{\sqrt{14}} \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix} = \text{unit vector (after normalization)}.$$

4. Inner Product, general:

Can we define IP on abstract vector spaces?

Definition 1: V= vector space. An *inner product* on V is any assignment of a numerical value to $\langle \mathbf{u}, \mathbf{v} \rangle$ which satisfies properties (a) to (d) of the above theorem.

Any vector space with IP defined is an *inner product space*.

Ex 1: Standard IP on \mathbb{R}^3 :

$$\mathbf{u} \cdot \mathbf{v} = \sum_{i} u_i v_i$$

[already know this satisfies (a) to (d)].

Ex 2: Recall

$$C[-\pi,\pi]=$$
 continuous functions on $[-\pi,\pi]$

are vector space

[note
$$C[-\pi,\pi]$$
 has a basis $\{1,\sin nx,\cos nx\}_{n=1}^{\infty}$; infinite dimensional]

Define inner product of functions:

$$f \cdot g = \langle f, g \rangle = \int_{-\pi}^{\pi} f(x) g(x) dx.$$

[satisfies (a)-(d); check this]

Property (a) $(f, f) \ge 0$; (f, f) = 0 iff f = 0.

Pf: We have

$$(f,f) = \int_0^1 f^2(x) dx \ge 0$$

since f^2 is non-negative. Also, if (f,f)=0, then $\int_0^1 f^2 \, dx=0$. From calculus, if a function is nonnegative and its integral is 0, then f(x)=0, as desired. Also, if f=0 then clearly (f,f)=0. \square

Other facts proved from the definitions the same way.

3. Schwarz inequality and triangle inequality:

Theorem 2 (Cauchy-Schwarz inequality): $|(\mathbf{u}, \mathbf{v})| \le \|\mathbf{u}\| \|\mathbf{v}\|$ for any two vectors in a vector space with an inner product.

Proof: Standard in linear algebra.

Ex 3:
$$\mathbf{u} = \begin{bmatrix} 1 \\ -1 \\ 2 \end{bmatrix}$$
; $\mathbf{v} = \begin{bmatrix} 2 \\ 2 \\ -1 \end{bmatrix}$; then $\mathbf{u} \cdot \mathbf{v} = -2$, while

$$\|\mathbf{u}\| \ \|\mathbf{v}\| = \sqrt{6}\sqrt{9} = 3\sqrt{6} \ge |-2|,$$

as desired.

Theorem 3 (Triangle inequality): For any two vectors u and v, we have $||u+v|| \le ||v|| + ||v||$.

Proof: standard in linear algebra.

4. Orthogonal vectors:

Three dimensions: vectors $\mathbf{v} = \begin{bmatrix} 2 \\ 2 \\ -1 \end{bmatrix}$ and $\mathbf{w} = \begin{bmatrix} -2 \\ 1 \\ -2 \end{bmatrix}$

have zero dot product.

fig 4 Thus we know that $\parallel \mathbf{v} \parallel \parallel \mathbf{w} \parallel \cos \theta = 0 \Rightarrow \theta = \pi/2$.

Thus the vectors are perpendicular or orthogonal.

Orthogonality More generally, what happens with higher dimensional vectors?

Note
$$\begin{bmatrix} 2 \\ -3 \\ 1 \\ -1 \end{bmatrix}$$
 and $\begin{bmatrix} -2 \\ -1 \\ 0 \\ -1 \end{bmatrix}$ also have zero dot product.

So they are perpendicular

Orthogonality

Def 2: We define to vectors **v** and **w** to be *perpendicular* or *orthogonal* if

$$\mathbf{v} \cdot \mathbf{w} = 0$$
.

[note this implies angle between them is $\theta = \pi/2$]

Def 3: A collection $S = \{v_1, v_2, \dots, v_n\}$ of vectors is *orthogonal* if each pair of the vectors ais orthogonal. A collection is *orthonormal* if they are orthogonal and all are unit (length 1) vectors.

Orthogonality

Ex 4:

$$\begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}, \begin{bmatrix} 1 \\ 1 \\ -2 \end{bmatrix}, \begin{bmatrix} -1 \\ 1 \\ 0 \end{bmatrix}$$

are orthogonal, not orthonormal.

Orthogonality

$$\frac{1}{\sqrt{3}} \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}, \ \frac{1}{\sqrt{6}} \begin{bmatrix} 1 \\ 1 \\ -2 \end{bmatrix}, \frac{1}{\sqrt{2}} \begin{bmatrix} -1 \\ 1 \\ 0 \end{bmatrix}$$

are orthonormal.

[just check dot products and lengths]

fig 5

Orthonormal bases

3. Advantage of orthonormal bases:

Given an orthonormal basis $\{\mathbf{v}_1,\mathbf{v}_2,\mathbf{v}_3\}$, how do we express a

vector w in terms of the vectors in it?

$$\mathbf{v}_1 = \frac{1}{\sqrt{3}} \begin{bmatrix} 1\\1\\1 \end{bmatrix}, \quad \mathbf{v}_2 = \frac{1}{\sqrt{6}} \begin{bmatrix} 1\\1\\-2 \end{bmatrix}, \quad \mathbf{v}_3 = \frac{1}{\sqrt{2}} \begin{bmatrix} -1\\1\\0 \end{bmatrix}$$

assume $\mathbf{w} = \begin{bmatrix} 2 \\ 1 \\ 1 \end{bmatrix}$.

$$\begin{bmatrix} 2 \\ 1 \end{bmatrix}$$

Orthonormal bases

Notice that:

$$\mathbf{w} = c_1 \mathbf{v}_1 + c_2 \mathbf{v}_2 + c_3 \mathbf{v}_3.$$

Then:

$$(\mathbf{w}, \mathbf{v}_1) = c_1 = \frac{4}{\sqrt{3}}$$

Orthonormal bases

Similarly

$$(\mathbf{w}, \mathbf{v}_2) = c_2 = \frac{1}{\sqrt{6}}$$

$$(\mathbf{w}, \mathbf{v}_3) = c_3 = -\frac{1}{\sqrt{2}}.$$

Thus expansion is easy to get with orthonormal bases!

[Orthonormal bases make such computations easy].