Gene expression experiments
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1. Motivation: Statistical machine learning and

reproducing kernel Hilbert Spaces
Gene expression experiments

Question: Gene expression - when is the DNA in a gene g
transcribed and thus expressed (as RNA) in a cell?



One solution: Measure RNA levels (result of transcription)
Method: Microarray or RNA Seq array

Result: for each subject tissue sample s, obtain a feature
vector:

(I)(S) =X = (5131, ceey .I'Q()’O()O)

consisting of expression levels of 20,000 genes.
Can we classify tissues this way?

Goals:



1. Differentiate two different but similar cancers.
2. Understand genetic pathways of cancer

Basic difficulties: few samples (e.g., 30-200); high dimension
(e.g., 5,000 - 100,000).

Curse of dimensionality - too few samples and too many
parameters (dimensions) to fit them.

Tool: Support vector machine (SVM)



Procedure: look at feature space F' in which ®(s) lives, and
differentiate examples of one and the other cancer with a
hyperplane:

Methods needed for full analysis (of SVM and other high
dimensional methods):



Reproducing kernel Hilbert spaces (RKHS)



Learning theory
2. Machine Learning: The role of learning theory

The role of learning theory has grown a great deal in:

* Mathematics

» Statistics

» Computational Biology

* Neurosciences, e.g., theory of plasticity, workings of visual
cortex



Learning theor

Source: University of Washington



Kernel methods
Kernel methods are used widely in:

 Computer science, e.g., vision theory, graphics, speech
synthesis



Source: T. Poggio/M



Kernel methods
Face identification:
T3) 31 e} AC
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Kernel methods
People classification or detection:

pedestrian

Poggio/MIT



Learning theory
We want the theory behind such learning algorithms-

3. The learning theory problem

Given an unknown function f(x) : R — R, learn f(x) from a
few examples, i.e., a few inputs x where f(x) is known.

Determine unknown f(x) from knowing its value at several
points X.



Learning theory
Example 1: x is retinal activation pattern (i.e., x; = activation
level of retinal neuron i), and y = f(x) > 0 if the retinal
pattern is a chair; y = f(x) < 0 otherwise.

[Thus: want concept of a chair]
Given: examples of chairs (and non-chairs): X1, Xs, ..., Xy,

together with proper outputs ¥, ..., y,. The information is in
a training set 7 = {(x;, v:)}¥,



Learning theory
Goal: Give best possible estimate of the unknown function f,
l.e., try to learn the concept f from the examplesin 7.

But: given pointwise information about f not sufficient: which
is the "right" f(z) given the training data points 7
below?



Learning theory
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Learning theory

[How to decide?]
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Infinite dimensional spaces
4. Infinite dimensional vector spaces:

[This material is short course in real/functional analysis; see
me if you want more sources]

[Notation: in infinite dimensions generally don't use boldface
on vectors]

Let H be a vector space with inner product. Recall by
definition

(v, 0) = [[o]]*.



Infinite dimensional spaces
Recall ||v]| = norm v = length w.

Distance between vectors vy, ve: ||lv1 — vs]|.

Consider infinite collection
S ={vy,v9,v3...} C H.



Infinite dimensional spaces
Define infinite linear combinations by:
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[Definitions of span, linear independence, basis same except
we now allow infinite sums]



Infinite dimensional spaces
Def. 4. All previous linear algebra definitions (e.g. spanning,

linear independence, basis) extend directly to the case of
infinite numbers of vectors.

Example: A collection {vy,v,...} of vectors spans a vector
space V if every vector v € V' can be written as a (possibly

(0. ¢]
infinite) linear combination v = cyvy + covy + ... = D> ;.
=1

[Henceforth always allow infinite linear combinations.]



Hilbert spaces
Def 5: An inner product space H is complete if any sequence
{z;}3°, € H which is Cauchy, i.e., ||z; —z,|| — 0 (thatis,

i,J—00
it should converge) actually converges to some =z € H, i.e.
xr;, — .

[Thus if the sequence bunches up, there is something for it to
converge to.]

Such an inner product space H that is complete is called a
Hilbert space.



Example of incomplete space
Ex: Not all inner product spaces are Hilbert spaces since not
all are complete. As an example, consider the space
P = {all polynomials on [0,1]}. Define inner product

(f,9) = Jy f()g(z)dz.
Then resulting norm is || f(2)||? = (f, f) = folfQ(x)dx.

This space is not complete: consider the vectors vy defined
by the partial sums of the Taylor series for e” :



Example of incomplete space

n
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Example of incomplete space
Note thatif NV > M then
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Example of incomplete space

So easy to show Y || Z; || < co. Thus it easily follows that
n=0

|lun — varl| 0,

—
N, M — oo

so that the sequence vy is a Cauchy sequence in H.



Example of incomplete space
But note that by Taylor series

—e—E ——e — 0
N—oo

uniformly on [0,1]. Thus easy to show that

Jox(z) = el —>__ 0.



Example of incomplete space
So:

vy (z) — e”.

But: can show that a sequence of functions can't converge to 2
different functions. Thus there is no polynomial p(z) (i.e.
something in our space P) such that

v (@) — p().

Thus vy do not converge to something in P and thus P is not
complete!

[Moral: intuitively, complete space is one where any
convergent sequence P, converges to an element P of the
original space.]



Theorem 4: If B ={vy,v9,vs,...} is a collection of vectors
that is orthonormal (i.e, unit lengths and inner product 0),
then it is automatically linearly independent.

If B is a basis for H and is orthonormal, it is called an
orthonormal basis.



Examples of Hilbert spaces

Ex 2: H=R3={v=(v1,vuvs)|lv; € R} is a Hilbert space
(i.e., not hard to show that it's complete). Inner product is
the usual one for vectors:

(v, w) = vViwy + Vowy + V3Ws.

This H is a Hilbert space.
Orthonormal basis:
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Examples of Hilbert spaces

Ex 3:
H = P* = second order polynomials on [0,1] =

{ag + a1 + azx® : a; € R}

forms a Hilbert space.

Inner product:
(p1(x) fo p1(x)p2(x) de.



Examples of Hilbert spaces
Note it is not hard to show that H is complete (in fact any finite
dimensional vector space is complete).

Thus H is a Hilbert space.

Ex 4: Note H =R* = {v = (v1,v2,03,...)|v; € R} is (almost)
a Hilbert space, if we define the inner product

0. @]
(v,w) = viwy + Vowg + ... = g ViW;
=1



Examples of Hilbert spaces
Length of a vector v is

o0 o0
ol = /D _vivi = [ D v
1=1 i=1

Thus to have well-defined lengths we add to the definition of
H, the condition that

lof| < o0

for all v € H. Then can show that H satisfies all the properties
of a Hilbert space (in particular it's complete).



Examples of Hilbert spaces
Can show that the set of vectors

"01 = (1,0,0,)
= (0,1,0,...)
)

= (0,0,1,..

-

is certainly orthonormal, and it spans H, so it is an
orthonormal basis for H.



