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Infinite Dimensional Vector Spaces

1.  Motivation:  Statistical machine learning and
reproducing kernel Hilbert Spaces

Gene expression experiments

Question:  Gene expression - when is the DNA in a gene 1
transcribed and thus expressed (as RNA) in a cell?



One solution:  Measure RNA levels (result of transcription)

Method:  Microarray or RNA Seq array

Result:  for each subject tissue sample , obtain a feature=
vector:

FÐ=Ñ œ œ ÐB ßá ß B Ñx " #!ß!!!

consisting of expression levels of 20,000 genes.

Can we classify tissues this way?

Goals:



1. Differentiate two different but similar cancers.
2. Understand genetic pathways of cancer

Basic difficulties:  few samples (e.g., 30-200);  high dimension
(e.g., 5,000 - 100,000).

Curse of dimensionality - too few samples and too many
parameters (dimensions) to fit them.

Tool:  Support vector machine (SVM)



Procedure: look at feature space  in which  lives, andJ Ð=ÑF
differentiate examples of one and the other cancer with a
hyperplane:

Methods needed for full analysis (of SVM and other high
dimensional methods):



Reproducing kernel Hilbert spaces (RKHS)



Learning theory
2.  Machine Learning:  The role of learning theory

The role of learning theory has grown a great deal in:

 •  Mathematics
 •  Statistics
 •  Computational Biology 
 •  Neurosciences, e.g., theory of plasticity, workings of visual

cortex

 



Learning theory

      Source: University of Washington



Kernel methods

Kernel methods are used widely in:

 •  Computer science, e.g., vision theory, graphics, speech
synthesis



Kernel methods

  Source:  T. Poggio/M



Kernel methods
 Face identification:

             MIT



Kernel methods
  People classification or detection:

        Poggio/MIT



Learning theory
We want the theory behind such learning algorithms-

3.  The learning theory problem

Given an unknown function  learn  from a0Ð Ñ À Ä ß 0Ð Ñx x‘ ‘.

few examples, i.e., a few inputs  where  is known.x x0Ð Ñ

Determine unknown  from knowing its value at several0Ð Ñx
points .x



Learning theory
Example 1:  x is retinal activation pattern (i.e., activationB œ3

level of retinal neuron ), and  if the retinal3 C œ 0Ð Ñ  !x
pattern is a chair;  otherwise.C œ 0Ð Ñ  !x

[Thus: want concept of a chair]

Given:  examples of chairs (and non-chairs): ,x x x" # 8ß ßá ß
together with proper outputs The information is inC ßá ß C Þ" 8

a training set g œ ÖÐ ß C Ñ×x3 3 3œ"
R

This is the information:

R0 œ Ð0Ð Ñßá ß 0Ð ÑÑx x" 8



Learning theory
Goal:  Give best possible estimate of the unknown function ,0

i.e., try to learn the concept  from the examples in .0 g  .R0

But:  given pointwise information about  not sufficient:  which0
is the "right"  given the training data points  0ÐBÑ g R0
below?



Learning theory



Learning theory
(a)

          



Learning theory
(b)

[How to decide?]



Infinite dimensional spaces

4.  Infinite dimensional vector spaces:

[This material is short course in real/functional analysis; see
me if you want more sources]

[Notation:  in infinite dimensions generally don't use boldface
on vectors]

Let  be a vector space with inner product.  Recall byL
definition

Ø@ß @Ù œ m@m#.



Infinite dimensional spaces
Recall norm length .m@m œ @ œ @

Distance between vectors :   .@ ß @ m@  @ m" # " #

Consider infinite collection

W œ Ö@ ß @ ß @ á× § LÞ" # $



Infinite dimensional spaces
Define infinite linear combinations by:

�
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[Definitions of span, linear independence, basis same except
we now allow infinite sums]



Infinite dimensional spaces
Def. 4.  All previous linear algebra definitions (e.g. spanning,

linear independence, basis) extend directly to the case of
infinite numbers of vectors.

Example:  A collection  of vectors  a vectorÖ@ ß @ ßá×" # spans
space  if every vector  can be written as a (possiblyZ @ − Z

infinite) linear combination @ œ - @  - @ á œ - @ Þ" " # # 3 3
3œ"

∞�
[Henceforth always allow infinite linear combinations.]



Hilbert spaces
Def 5: An inner product space  is if any sequenceL complete 

ÖB × § L mB  B m Ä !3 3 43œ"
∞

3ß4Ä∞
 which is , i.e.,   (that is,Cauchy

it  converge) actually converges to some , i.e.should B − L

B Ä BÞ3

[Thus if the sequence bunches up, there is something for it to
converge to.]

Such an inner product space  that is complete is called aL
Hilbert space.



Example of incomplete space
Ex:   Not all inner product spaces are Hilbert spaces since not

all are complete.  As an example, consider the space
T œ Ö Ò!ß "Ó×all polynomials on  .  Define inner product
Ð0 ß 1Ñ œ 0ÐBÑ1ÐBÑ.BÞ'

!

"

Then resulting norm is ll0ÐBÑll œ Ø0ß 0Ù œ 0 ÐBÑ.BÞ# #
!

"'
This space is not complete:  consider the vectors  defined@R

by the partial sums of the Taylor series for / ÀB



Example of incomplete space
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R 8� = a polynomial.  



Example of incomplete space
Note that if  thenR  Q
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Example of incomplete space

So easy to show .  Thus it easily follows that�
8

∞
B
8x

=0
m m  ∞

8
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so that the sequence  is a  in .@ LR Cauchy sequence



Example of incomplete space
But note that by Taylor series

@ ÐBÑ  / œ  / Ä !
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uniformly on [0,1].  Thus easy to show that

m@ ÐBÑ  / m !Þ
R Ä ∞

R
B  Ò



Example of incomplete space
So:

@ ÐBÑ Ä / ÞR
B

But: can show that a sequence of functions can't converge to 2
different functions.  Thus there is no polynomial  (i.e.:ÐBÑ
something in our space ) such thatT

@ ÐBÑ Ä :ÐBÑÞR

Thus  do not converge to something in  and thus is @ T TR not
complete!

[Moral: intuitively, complete space is one where any
convergent sequence  converges to an element  T T8 of the
original space.]



Theorem 4:    If      is a collection of vectorsF œ Ö@ ß @ ß @ ßá×" # $

that is orthonormal (i.e, unit lengths and inner product ),!
then it is automatically linearly independent.

If  is a basis for  and is orthonormal, it is called anF L
orthonormal basis.



Examples of Hilbert spaces

Ex 2:    is a Hilbert spaceL œ œ Ö@ œ Ð@ ß @ @ Ñl@ − ×‘ ‘$
" #ß $ 3

(i.e., not hard to show that it's complete). Inner product is 
the usual one for vectors:

Ð@ß AÑ œ @ A  @ A  @ A Þ" " # # $ $

This  is a Hilbert space.L
Orthonormal basis:

e e e" œ à œ à œ Þ
" ! !
! " !
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Õ Ø Õ Ø Õ Ø# $



Examples of Hilbert spaces

Ex 3:
L œ œ Ò!ß "Ó œ  second order polynomials on #

Ö+  + B  + B À + − ×! " $ 3
# ‘

forms a Hilbert space.

Inner product:
                        Ð: ÐBÑß : ÐBÑÑ œ : ÐBÑ: ÐBÑ .BÞ" # " #!

"'



Examples of Hilbert spaces
Note it is not hard to show that  is complete (in fact any finiteL

dimensional vector space is complete).

Thus  is a Hilbert space.L

Ex 4: Note     is (almost)L œ œ Ö@ œ Ð@ ß @ ß @ ßá Ñl@ − ×‘ ‘∞
" # $ 3

a Hilbert    space, if we define the inner product

Ð@ß AÑ œ @ A  @ A á œ @ A" " # # 3 3

3œ"
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Examples of Hilbert spaces
Length of a vector    is@

m@m œ @ @ œ @ ÞË Ë� �
3œ" 3œ"

∞ ∞

3 3 3
#

Thus to have well-defined lengths we add to the definition of
L , the condition that

m@m  ∞

for all .  Then can show that  satisfies all the properties@ − L L
of a Hilbert space (in particular it's complete).



Examples of Hilbert spaces
Can show that the set of vectors

@ œ Ð"ß !ß !ßá Ñ"

@ œ Ð!ß "ß !ßá Ñ#

@ œ Ð!ß !ß "ßá Ñ$

 ã

is certainly orthonormal, and it spans , so it is anL
orthonormal basis for .L


