MA 751 Part 4

Measurability and Hilbert Spaces

1. Measurable functions and integrals

Let C be the set of continuous functions on \mathbb{R} . Let M be the set of measurable functions:

Def: The set M of *measurable functions* on \mathbb{R} (or an interval of \mathbb{R}) is the set of functions that are limits of continuous functions, i.e.

$$M = \{f(x): f(x) = \lim_{n \to \infty} f_n(x), \text{ where } f_n(x) \text{ is continuous,}$$

for all $x \in \mathbb{R}$ }.

Fig. 1: the function f(x) as a limit of continuous functions

In fact, lots of functions (even discontinuous ones) can be viewed as limits of continuous functions.

For example

$$f(x) = \chi_{[0,1]}(x) = \begin{cases} 1 & \text{if } x \in [0,1] \\ 0 & \text{otherwise} \end{cases}.$$

is a discontinuous but measurable function.

Note: ordinary notion of integral is difficult to use for functions as complicated as measurable functions.

To integrate measurable functions (Lebesgue integral):

Theorem: Given a non-negative measurable function $f: \mathbb{R}^p \to \mathbb{R}$, there is always an *increasing* sequence $\{f_n(\mathbf{x})\}_{n=1}^{\infty}$ of continuous functions (i.e. with the property

 $\{f_n(\mathbf{x})\}_{n=1}^{\infty}$ of continuous functions (i.e. with the property that $f_{n+1}(\mathbf{x}) \geq f_n(\mathbf{x})$ for all \mathbf{x}) which converges to $f(\mathbf{x})$.

Def.: If $f(\mathbf{x}) \geq 0$ is a positive measurable function, define

$$\int_{\mathbb{R}^p} f(x)\,dx = \lim_{n o\infty} \int_{\mathbb{R}^p} f_n(x)\,dx,$$

where $f_n(x)$ is any increasing sequence of continuous functions which converges to f.

[note we know the value of the integrals of the continuous functions $f_n(\mathbf{x})$ - they are ordinary Riemann integrals on \mathbb{R}^p]

Fig. 2: sequence of continuous functions $f_n(\mathbf{x})$ increasing to $f(\mathbf{x})$

Def: To find the integral of a negative measurable function f, we just compute the integral of -f (which is positive), and put a minus sign in front of it. Since every function f is the sum of a positive plus a negative function

$$f = f_1 + f_2,$$

the integral of f is defined as

$$\int_{-\infty}^{\infty} f \, dx = \int_{-\infty}^{\infty} f_1 \, dx + \int_{-\infty}^{\infty} f_2 \, dx.$$

[Thus we now know how to define the integral of an arbitrary function]

Ex 5: if f(x) looks like:

fig 3: f(x) has positive and negative part

Then integral of f(x) is integral of a positive plus a negative function:

fig 4: now sum the areas between f_1 (or f_2) and the x axis

Note we can show pretty easily all the properties of integrals we are used to also hold for this more general *Lebesgue integral*. For example, we still have

$$\int (f+g) \ dx = \int f \ dx + \int g \ dx, \text{ etc.}$$

[For now we will assume the above fact.]

2. New Hilbert spaces:

Consider the space

$$\begin{split} H &= L^2[\,-\pi,\!\pi] = \{\text{measurable} \quad \text{real} \quad \text{functions } f(x) \qquad \text{on } \\ [\,-\pi,\pi] \quad \text{with} \quad \int_{-\pi}^{\pi} f^2(x) dx < \infty \}. \end{split}$$

Can show that if $f, g \in H$ then f + g and cf are in H if c is a constant (exercise). More generally H is a vector space.

Further, we can define an inner product on $\,H\,$ (known as the $\,L^2$ inner product):

$$\langle f,g \rangle = \langle f,g \rangle_{L^2} = \int_{-\pi}^{\pi} f(x) \, g(x) \, dx.$$

This satisfies conditions (1) - (4) of an inner product.

Can also show that H is complete (i.e., every Cauchy sequence $\{f_n\}$ converges to a function f in H).

Thus H is a Hilbert space.

Note: we always consider two measurable functions the same if they differ just at a finite number of points

fig 5: two functions f_1 and f_2 which differ at a finite collection of points.

Can show: such functions f_1 and f_2 have the same integral [certainly area is unchanged]; equivalently,

$$\int |f_1 - f_2| \, dx = 0$$

Def 6: More generally we will consider two functions to be the same or *equivalent* if (1) holds

Ex 6: Let
$$H=L^2[-\pi,\pi]$$
, with its usual inner product $\langle f,g\rangle=\langle f,g\rangle_{L^2}=\int_{-\pi}^{\pi}f(x)g(x)dx$. Consider the set of vectors

$$B = \{\{\sin nx | n = 1, 2, ...\} \text{ together with } \{\cos nx | n = 0, 1, 2, ...\}$$

= $\{1, \cos x, \sin x, \cos 2x, \sin 2x, ...\}$

We will show this is an orthogonal set. First: show that 1 is orthogonal to all other vectors:

$$\langle 1, \cos nx \rangle = \int_{-\pi}^{\pi} \cos nx \, dx = 0 \quad \forall \ n = 1, 2, \dots$$

$$\langle 1, \sin nx \rangle = \int_{-\pi}^{\pi} \sin nx \, dx = 0 \quad \forall \ n = 1, 2, \dots$$

Now show that (for example) $\cos 5x$ is orthogonal to all other vectors:

$$\langle \cos 5x, \sin nx \rangle = \int_{-\pi}^{\pi} \cos 5x \sin nx = 0 \quad \forall \quad n = 1, 2, \dots$$

To show above we use the trig identities:

$$\cos a \cos b = \frac{1}{2} [\cos (a+b) + \cos (a-b)]$$

and

$$\sin a \cos b = \frac{1}{2} [\sin (a+b) + \sin (a-b)]$$

$$\sin a \sin b = -\frac{1}{2} [\cos (a+b) - \cos (a-b)].$$

[Similarly for any other $\cos mx$.]

$$\langle \cos 5x, \cos nx \rangle = \int_{-\pi}^{\pi} \cos 5x \cos nx \, dx = 0 \ \forall \ n \neq 5$$

Can similarly show that $\sin mx$ is also orthogonal to all other vectors.

Thus these vectors form a orthogonal set of vectors. Are they orthonormal?

$$\|\cos nx\|^2 = (\cos nx, \cos nx) = \int_{-\pi}^{\pi} \cos^2 nx dx$$

$$= \int_{-\pi}^{\pi} \frac{1 + \cos 2nx}{2} dx$$

$$= \pi$$

Thus:

$$\|\cos nx\| = \sqrt{\pi}.$$

Thus $\frac{1}{\sqrt{\pi}}\cos nx$ has length 1.

Similarly, $\frac{1}{\sqrt{\pi}} \sin nx$ has length 1

And: $\frac{1}{\sqrt{2\pi}} \cdot 1$ has length 1.

Thus:

 $= \{v_1, v_2, v_3, \dots\}$

cont. functions.

written in the form:

 $\frac{1}{\sqrt{\pi}}$ sin 3x, ...}

 $\{\frac{1}{\sqrt{2\pi}}, \frac{1}{\sqrt{\pi}}\cos x, \frac{1}{\sqrt{\pi}}\sin x, \frac{1}{\sqrt{\pi}}\cos 2x, \frac{1}{\sqrt{\pi}}\sin 2x, \frac{1}{\sqrt{\pi}}\cos 3x,$

Are an orthonormal (and hence lin ind) set for the space of

Can show: they are a basis. So any vector f(x) can be

$$f(x) = c_1 v_1 + c_2 v_2 + \dots$$

$$= c_1 \frac{1}{\sqrt{2\pi}} + c_2 \frac{1}{\sqrt{\pi}} \cos x + c_3 \frac{1}{\sqrt{\pi}} \sin x + c_4 \frac{1}{\sqrt{\pi}} \cos 2x$$

$$+ c_5 \frac{1}{\sqrt{\pi}} \sin 2x + \dots$$

$$= \frac{a_0}{2} + a_1 \cos x + b_1 \sin x + a_2 \cos 2x + b_2 \sin 2x + \dots$$

[Fourier series of a function]

Notice that

$$c_4 = (f(x), \frac{1}{\sqrt{\pi}}\cos 2x) = \int_{-\pi}^{\pi} f(x) \frac{1}{\sqrt{\pi}}\cos 2x \, dx$$

$$= \frac{1}{\sqrt{\pi}} \int_{-\pi}^{\pi} f(x) \cos 2x \, dx$$

$$\Rightarrow \qquad a_2 = \frac{c_4}{\sqrt{\pi}} = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos 2x \, dx$$

Generally:

$$a_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos nx \, dx$$

$$b_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin nx \, dx.$$

[Now: no need to do advanced calculus for theory of Fourier series!]

Ex: f(x) = 2x

$$2x = \frac{a_0}{2} + a_1 \cos x + b_1 \sin x + a_2 \cos 2x + b_2 \sin 2x + \dots$$

$$b_5 = \frac{1}{\pi} \int_{-\pi}^{\pi} 2x \sin 5x \, dx = \frac{2}{\pi} \left\{ -\frac{x \cos 5x}{5} \Big|_{-\pi}^{\pi} + \underbrace{\int_{-\pi}^{\pi} \frac{\cos 5x}{5} dx}_{5} \right\}$$

$$=\frac{2}{\pi}\left\{\frac{2\pi}{5}\right\}=\frac{4}{5}$$

$$b_6 = -\frac{4}{6}$$

Generally:

$$b_n = rac{1}{\pi} \int_{-\pi}^{\pi} 2x \cos nx = \left\{ egin{array}{ll} -rac{4}{n} & ext{if } n & ext{even} \\ rac{4}{n} & ext{if } n & ext{odd} \end{array}
ight.$$

Can show
$$a_n = 0$$
.

Thus

$$2x = b_1 \sin x + b_2 \sin 2x + b_3 \sin 3x + \dots$$

$$= 4 \left[1 \cdot \sin x - \frac{1}{2} \cdot \sin 2x + \frac{1}{3} \cdot \sin 3x + \dots \right]$$

[can draw pictures of first three terms (see earlier); all divided by 2 for the function x]