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1. Linear functionals
Given a vector space , we define a map  from  toZ 0 À Z Ä Z‘

the real numbers to be a .functional
If  is , i.e., if for real  we have0 +ß ,linear

0Ð+  , Ñ œ +0Ð Ñ  ,0Ð Ñßx y x y

then we say  is a 0 linear functional.

If  is an inner product  space (so each  has a length ),Z m mv v
we say that  is  if0 bounded

l0Ð Ñl Ÿ Gm mx x

for some number  and all .G  ! − \x



Reproducing kernel Hilbert spaces

2.  Reproducing Kernel Hilbert spaces:

Def. 1.  A  matrix  is symmetric if  for all8 ‚ 8 Q Q œ Q 3ß 4Þ34 43

A symmetric  is if all of its eigenvalues are non-Q positive 
negative.



Reproducing kernel Hilbert spaces
Equivalently  is positive ifQ

Ø ßQ Ù ´ Q   !a a a aX

for all vectors , with ,  the standard innera œ Ø † † Ù

+
+
ã
+

Ô ×Ö ÙÖ Ù
Õ Ø

"

#

8

product on .  Above  is the transpose of‘8 X
" 8a œ Ð+ ßá ß + Ñ

a.



Reproducing kernel Hilbert spaces
Definition 2:   Let  be compact (i.e., a closed bounded\ © ‘:

subset).  A (real) reproducing kernel Hilbert space (RKHS)
[ on  is a Hilbert space of functions on  (i.e., a\ \
complete collection of functions which is closed under
addition and scalar mult, and for which an inner product is
defined)Þ

[ also needs the property:  for any fixed , the evaluationx − \
functional  defined byx‡ À Ä[ ‘

x x‡Ð0Ñ œ 0Ð Ñ

bounded linear functional on .[



Reproducing kernel Hilbert spaces
Definition 3:  We define a to be a functionkernel 

O À \ ‚\ Ä ‘ which is symmetric, i.e.,

OÐ ß Ñ œ OÐ ß Ñx y y x

for .  We say that  is  if for any fixedx yß − \ O positive
collection

Ö ßá ß × § \x x" 8 ,

the  matrix8 ‚ 8

O œ ÐO Ñ ´ OÐ ß Ñ34 3 4x x

is positive (i.e., non-negative).



Kernel existence

We now have the reason these are called RKHS:

Theorem 1:  Given a reproducing kernel Hilbert space  of[
functions on , there exists a unique symmetric\ § ‘.

positive kernel function  such that for all OÐ ß Ñ 0 − ßx y [

0Ð Ñ œ Ø0Ð ÑßOÐ ßx x† † ÑÙ[

(inner product above is in the variable  ;    is fixed).† x 

Note this means that evaluation of  at  is equivalent to taking0 x
inner product of  with the fixed function .0 OÐ † ß Ñx



Kernel existence
Proof (please look at this on your own):  For any fixed ,x − \

recall  is a bounded linear functional on .  By the x‡ [ Riesz
Representation theorem  1 there exists a fixed function, call it
O Ð † Ñ 0 − 0x  such that for all (recall  is fixed, now  is[ x
varying)

0Ð Ñ œ Ð0Ñ œ Ø0Ð † ÑßO Ð † ÑÙÞx x‡
x (1)

(all inner products are in  in , i.e., ).[ß P Ø0 ß 1Ù œ Ø0ß 1Ùnot #
[

1Riesz Representation Theorem:   If  is a bounded linear functional on , there9 [ ‘ [À Ä
exists a unique  such that  .y x x y x− a − ß Ð Ñ œ Ø ß Ù[ [ 9



Kernel existence
That is, evaluation of  at  is equivalent to an inner product0 x

with the function .Ox

Define  Note by (1), the functions   andOÐ ß Ñ œ O Ð ÑÞ O Ð † Ñx y yx x
O Ð Ñy †  satisfy

ØO Ð † ÑßO Ð ÑÙ œ O Ð Ñ œ O Ð Ñx y y x† x y ,

so  is symmetric.OÐ ß Ñx y



Kernel existence
To prove  is positive definite:  let  be a fixedOÐ ß Ñ Ö ßá ß ×x y x x" 8

collection.  If , then if  is a matrixO ´ OÐ ß Ñ O œ ÐO Ñ34 3 4 34x x

and c œ ß

-
-
ã
-

Ô ×Ö ÙÖ Ù
Õ Ø

"

#

8



Kernel existence

Ø ßO Ù ´ O œ - - OÐ ß Ñ œ - - ØO Ð † ÑßO Ð † ÑÙc c c c x xX

3ß4œ" 3ß4œ"

8 8

3 4 3 4 3 4� � x x3 4

œ - O Ð † Ñß - O Ð † Ñ œ - O Ð † Ñ   !¤ ¥ ¾ ¾� � �
3œ" 4œ" 3œ"

8 8 8

3 4 3

#

x x x3 4 3

[

.   



Kernel existence
Definition 4:  We call the above kernel  theOÐ ß Ñx y

reproducing kernel of .[

Definition 5:  A is a positive definite kernelMercer kernel 
OÐ ß Ñx y x y which is also continuous as a function of  and 
and bounded.

Def. 6:  For a continuous function  on a compact set 0 \ § ‘.

we define

m0m œ l0Ð ÑlÞ∞
−\

max
x

x



Kernel existence
Theorem 2:
(i) For every Mercer kernel , there exists a O À \ ‚\ Ä ‘

unique Hilbert space  of functions on  such that  is its[ \ O
reproducing kernel.

(ii)  Moreover, this  consists of continuous functions, and for[
any 0 − [

m0m Ÿ Q m0m∞ O [,

where | |Q œ OÐ ß Ñ ÞO
ß −\
max
x y

x y



Kernel existence

Proof (please look at this on your own):  Let
OÐ ß Ñ À \ ‚\ Äx y ‘ be a Mercer kernel.  We will construct
a reproducing kernel Hilbert space  with reproducing[
kernel  as follows.O

Define

[! −\œ ÖO Ð † Ñ×span x x

œ - O Ð † Ñ À Ö × § \ à - − ÞH Ÿ�
3

3 3 3 3x3
x  is any finite subset ‘



Kernel existence
Now we define inner product  for  AssumeØ0 ß 1Ù 0 ß 1 − Þ[!

0Ð † Ñ œ + O Ð † Ñß 1Ð † Ñ œ , O Ð † ÑÞ� �
3œ" 3œ"

6 6

3 3x x3 3

[Note we may assume  both use same set  since if0ß 1 Ö ×x3

not we may take a union without loss].
 [Note again that here ]Ø † ß † Ù œ Ø † ß † Ù[



Kernel existence

Then define ØO Ð † ÑßO Ð † ÑÙ œ OÐ ß Ñx y x y

Ø0Ð † Ñß 1Ð † ÑÙ œ + OÐ ß † Ñß , OÐ ß † Ñ¤ ¥� �
3œ" 4œ"

6 6

3 3 4 4x x

œ + + ØOÐ ß † ÑßOÐ ß † ÑÙ œ + , OÐ ß ÑÞ� �
3ß4œ" 3ß4œ"

6 6

3 4 3 4 3 4 3 4x x x x



Kernel existence
Easy to check that with the above inner product  is an inner[!

product space (i.e., satisfies properties ).  NowÐ Ñ  Ð Ña d
form the of this space into the Hilbert space   completion2 [Þ

Note that for  as above0 œ + O Ð † Ñ�
3

3 x3

2The completion of a non-complete inner product space space  is the (unique) smallest[!

complete inner product (Hilbert) space  which contains .  That is, , the inner[ [ [ [! ! §
product on  is the same as on , and there is no smaller complete Hilbert space which[ [!

contains .[!

Example 1:  [ œ œ Ð+ ß + ßá Ñ l+ l  ∞ Ø ß Ù œ + ,œ Gº � �a a b" # 3 3 3
3œ" 3œ"

∞ ∞
#  with inner product  was

discussed in class.  The inner product space

 all but a finite number of  are 0[ [ [! " # 3œ Ð+ ß + ßá Ñ − + §œ Gº
 is an example of an incomplete space.   is its completion.[



Kernel existence

l0Ð Ñl œ Ø0Ð † ÑßOÐ ß † ÑÙ Ÿ m0Ð † ÑmmOÐ ß † Ñmx x x

œ m0m ØOÐ ß † ÑßOÐ ß † ÑÙÈ x x

ß + ßá Ñ − + §# 3[ [ºall but a finite number of  are 0

 is an example of an incomplete space.   is its completion.[
Example 2:  [ 1 1œ P Ð ß Ñ#  with standard inner product for functions.  We know if

0ÐB − 0ÐBÑ œ  + 5B  , 5B 0 −)  then  .  Define  to be all  for which the[ [ [+
#

5œ"

∞

5 5 !
! � cos sin

above sum is  (i.e., all but a finite number of terms are 0).  Then  is the completion offinite [
[!.



Kernel existence

Ÿ Q m0m ÞO [

[Note again here we write  by definition; similarlym0m œ m0m[
Ø0 ß 1Ù œ Ø0ß 1Ù[]

The above shows that the imbedding  (the latterM À Ä GÐ\Ñ[!

is the continuous functions on ) is bounded.  By this we\
mean that  maps function  as a function in  to itself asM 0 [!

a function in ; in  the norm of  isGÐ\Ñ GÐ\Ñ 0
m0m ´ l0ÐBÑl∞

B−\
sup .

By bounded we mean that  for somemM0m œ m0m Ÿ .m0m∞ ∞ [

constant ..  !



Kernel existence

Thus any Cauchy sequence in  is also Cauchy in , and[! GÐ\Ñ
so it follows easily that the completion  of  exists as a[ [!

subset of .GÐ\Ñ

That  is a reproducing kernel for  follows by approximationO [
from [!Þ



Regularization methods
3.  Regularization methods for choosing 0

Finding  from  is an :0 R0 œ œ ÖÐ ß C Ñ×g x3 3 3œ"
R ill-posed problem

the operator  does not exist because  is not one toR R"

one.

Need to combine both:

(a)  Data R0
(b)  A priori information, e.g., "  is smooth", e.g. expressing a0

preference for smooth over wiggly solutions seen earlier.

How to incorporate?  Using Tikhonov regularization methods.



Regularization methods

We introduce a representingregularization loss functional L  Ð0Ñ
penalty for choice of an "unrealistic"  such as that in (a)0
above.

Assume we want to find the correct function from data0 Ð Ñß! x

R0 Ð Ñ œ ÐÐ C Ñßá ß Ð ß C ÑÑ œ! " " 8 8x x x, g



Regularization methods
Suppose we are given  as a candidate for approximating0Ð Ñx

0 Ð Ñ Þ 0! x  from the information in  We score  as a good org
bad approximation based on a combination of its error on
the known points , together with its "plausibility", i.e.,Ö ×x3 3œ"

8

how low the Lagrangian

_ œ Z Ð0Ð Ñß C Ñ  PÐ0Ñ
"

8
�
3œ"

8

3 3x

is.  Here  is a measure of the loss wheneverZ Ð0Ð Ñß C Ñx3 3

0Ð Ñ Cx3 3 is far from , e.g.

Z Ð0Ð Ñß C Ñ œ l0Ð Ñ  C l Þx x3 3 3 3
#



Regularization methods
And  measures the  i.e., a measure ofPÐ0Ñ a priori loss,
discrepancy between the prospective choice  and our prior0
expectation about .0



Examples: Regularization methods
Example:

PÐ0Ñ œ mE0m œ . lE0Ð Ñl ßP
# #

# ( x x

where here E0 œ  0  0à 0 œ á  Þ? ? ` 0 ` 0
`B `B

# #

"
#

:
#

Note  and thus measures the degree of non-?0 PÐ0Ñ
smoothness that  has (i.e., we prefer smoother functions a0
priori).



Examples: Regularization methods

Example 7:  Consider the case  above.  ThePÐ0Ñ œ mE0m#

norm

m0m œ mE0m[ P#

= (at least ifreproducing kernel Hilbert space norm  
dimension  is small).  That is, it comes from an inner.
product , and with this innerØ0 ß 1Ù œ ÐE0ÑÐBÑÐE1ÑÐBÑ.B'

\

product  is an RKHS.[

If this is the case, in general things become easier.



Examples: Regularization methods
Example 8:  In the case ,  .0 œ 0ÐBÑ B − ‘"

Suppose we choose:

E0 œ  0  0 œ   " 0ß
. .

.B .B

# #

# #Œ 7
we have

PÐ0Ñ œ mE0m œ   " 0 .Bß
.

.B
#

#

#

#( ” •Œ 7
and  is a measure of "lack of smoothness" of .mE0m 0



Examples: Regularization methods

4.  More about using the Laplacian to measure
smoothness (Sobolev smoothness)

Basic definitions:  Recall the Laplacian operator  on a?
function  on 0 ‘:

0Ð Ñ œ 0ÐB ßá ß B Ñx " :

is defined by

?0 œ 0 á  0Þ
` `

`B `B

# #

"
#

:
#



Using the Laplacian for kernels

For  an even integer, we can define the Sobolev space=  !
L= by:

L œ Ö0 − P Ð Ñ À Ð"  Ñ 0 − P Ð Ñ×= # . =Î# # :‘ ? ‘

to be functions in  which are still in after taking theP Ð Ñ P# : #‘
derivative operation , i.e.,  repeated Ð"  Ñ ÐM  Ñ =Î#? ?=Î#

times (the operator  is always the identity)."

For  define the new inner product0ß 1 − L=



Using the Laplacian for kernels

Ø0 ß 1Ù œ ØÐ  "Ñ 0ß Ð  "Ñ 1Ù àL
=Î# =Î#

P= #? ?

[note ]Ø2Ð Ñß 5Ð ÑÙ œ 2Ð Ñ5Ð Ñ.x x x x xP \
# '

Can show that  is an RKHS with reproducing kernelL=

OÐ Ñ œ
"

Ðl l  "Ñ
z Y"

# =Œ 7
=

(3)



Using the Laplacian for kernels
where  denotes the inverse Fourier transform.  TheY"

function  is a function on "
Ðl l "Ñ " :

:
= # = = œ Ð ßá ß Ñ − ß= = ‘

where l l œ á  Þ= # # #
" := =



Using the Laplacian for kernels

Fig 1:   in one dimension - a smooth kernelOÐ Ñz



Using the Laplacian for kernels

OÐ Ñz  is called a radial basis function.

Note:  the kernel  (as function of 2 variables) is definedOÐ ß Ñx y
in terms of above  byO

OÐ ß Ñ œ OÐ  ÑÞx y x y



Using the Laplacian for kernels
The Representer Theorem for RKHS

1.  An application:  using RKHS for regularization

Assume again we have an unknown function  on , with only0 \
data

R0 œ ÐÐ C Ñßá ß Ð ß C ÑÑ œx x" " 8 8ß g .

To find the best guess  for , approximate it by the0 0s

minimizer



RKHS and regularization

0 œ m0Ð Ñ  C m  m0m Þs "

8
arg min
0−L 3œ"

8

3 3
# #

L
=

=H Ÿ� x - (1)

where  can be some constant.  Note we are finding an - 0

which balances minimizing �
3œ"

8

3 3
#m0Ð Ñ  C m ßx

i.e., the data error, with minimizing , i.e., maximizing them0m#L=

smoothness.  The solution to such a problem will look like
this:



RKHS and regularization

It will compromise between fitting the data (which may have
error) and trying to be smooth.



RKHS and regularization
The amazing thing:  0s  can be found explicitly using radial

basis functions.

2.  Solving the minimization

Now consider the optimization problem (1).  We claim that we
can solve it explicitly.  To see this works in general for
RKHS, return to the general problem.

Given an unknown RKHS.  Try to find the "best"0 − œ[

approximation  to  fitting the data0 0s



RKHS and regularization
R0 ´ ÐÐ ß C Ñßá ß Ð ß C ÑÑx x" " 8 8 , but ALSO satisfying a priori
knowledge that  is small.m0 m! [

Specifically, we want to find

arg min (2)
0− 3œ"

8

3 3
#

[
[

"

8
Z Ð0Ð Ñß C Ñ  m0m Þ� x -

Note we can have, e.g.,   In thatZ Ð0Ð Ñß C Ñ œ Ð0Ð Ñ  C Ñ Þx x3 3 3 3
#

case



RKHS and regularization

� �
3œ" 3œ"

8 8

3 3 3 3
#Z Ð0Ð Ñß C Ñ œ Ð0Ð Ñ  C Ñ Þx x

Consider the general case (2), with arbitrary error measure .Z
We have the



RKHS and regularization
Representer Theorem:  E solution of the Tikhonov

optimization problem  can be writtenÐ"Ñ

0ÐBÑ œ + OÐ ß Ñßs �
3œ"

8

3 3x x (3)

where  is the reproducing kernel of the RKHS .O [

Important theorem:  says we only need to find a set of 8
numbers  to optimize the infinite dimensional problem (1)+3

above.



RKHS and regularization
Proof:   Use calculus of variations.  If a minimizer  exists,0"

then for all , assuming that the derivatives with1 − [
respect to  exist:%



Representer theorem proof

! œ Z ÐÐ0  1ÑÐ Ñß C Ñ  m0  1m
. "

. 8%
% - %� º

3œ"

8

" 3 3 "
#

œ!

x [
%

œ Ð0 Ð Ñß C Ñ † 1Ð Ñ
" `Z

8 `0 Ð Ñ
�
3œ"

8

" 3
" 3 3 3x x x

 Ø0 ß 0 Ù  # Ø0 ß 1Ù  Ø1ß 1Ù
.

.
- % %

%
˜ ™" " "

#



Representer theorem proof

œ Z Ð0 Ð Ñß C Ñ † 1Ð Ñ  # Ø0 ß 1Ùß
"

8
�
3œ"

8

" " 3 3 3 "x x -

where  and all inner products are in Z Ð+ß ,Ñ œ Z Ð+ß ,Ñ Þ"
`
`+ [

Since the above is true for all  it follows that if we let1 − ß[
1 œ Ox we get:



Representer theorem proof

! œ Z Ð0 Ð Ñß C ÑO Ð Ñ  # Ø0 ßO Ù
"

8
�
3œ"

8

" " 3 3 3 "x xx x-

œ Z Ð0 Ð Ñß C ÑO Ð Ñ  # 0 Ð Ñß
"

8
�
3œ"

8

" " 3 3 3 "x x xx -

or

0 Ð Ñ œ Z Ð0 Ð Ñß C ÑOÐ ß ÑÞ
"

# 8
" " " 3 3 3

3œ"

8

x x x x
-

�



Representer theorem proof
Thus if a minimizer  exists for (1) it can be written in the0 œ 0 ßs

"

form (3) as claimed, with

+ œ Z Ð0 Ð Ñß C ÑÞ
"

# 8
3 " " 3 3

-
x

Note that this does not solve the problem, since the  are+3

expressed in terms of the solution itself.  But it does reduce
the possibilities for what a solution looks like.


