Lecture 11C (Optional).



MA 751 Part 6
Support Vector Machines

3. An example: Gene expression arrays

Assume we are given a tissue sample s, and
a feature vector

X = B(s) € RIO

consisting of 30,000 gene expression levels
as read by a gene expression array.



We wish to determine whether the tissue Is
cancerous or not.

For an x which in fact corresponds to
cancerous tissue, we will set the
corresponding output variable y = 1;
otherwise y = —1.



. swotwcormahnes
Consider a data set D = {(X;, y;) }i-4,

consisting of pairs of feature vectors x; and
corresponding (correct) diagnoses

Yi € {—1, 1}.

Can we find the right function f; : FF — B
which generalizes the above examples, so
that f1(x) = y for all feature vectors?



. scupotvestormachines
Easier (see below):

Finda f : ' — R, where
F(x)>01f f1(x) =1; f(x) <0 if fi(x)=-1.



-~ suwpotvectormachines
4. Support vector machine framework

Recall the regularization setting: we have n
examples

D = {(leyl)a seey (Xnayn)}1
with X; ERd, Y; EBZ{:: 1}.




~ supportveciormachines
As mentioned above, we want to find a

function f; : R — B which generalizes the
above data so that f(x) = y generalizes the
data D.

As mentioned there, we will actually want
here something more general: a function
f(x) which will best help us decide the true
value of y.



It may not need to be that we want f(x) = y,
but rather we want

Fx)>>1 if y=
{f(x)<<1 ify=—1 (2)

l.e., f(X) is large and positive if the correct
answer is y = 1 (e.g. a chair)and f(x)is
large and negative If the correct answer Is
y = —1 (not a chair).



~ supportveciormachines
Then the decision rule will be to conclude the

value of y based on the rule (2). Thisis
made precise as follows. We have the
following



. scupotvestormachines
optimization criterion for the 'right’ f:

f = argmin— ZL yi, f(%i)) + Al f Ik

feHr 7:_

where || f||x = norm in an RKHS H, e.qg.,
I£l = Al = [ (Ap?de

Above 'arg min' denotes the f which
minimizes the above expression.
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Loss function: hinge loss

L(f(x),y) = (1 —yf(X))+,
where

(@), = max(a,0).
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5. More about the hinge loss

Consider the error function

L(f(x),y) = (1 —yf(x))+ = max(l —yf(x),0).

[ small ify, f(X) have same sign
| large otherwise '



1 yf(x)

This is called the hinge loss function.



-~ suwpotvectormachines
[INotice margin built in: error 0 only If

yf(X) > 1 (more stringent requirement than
justyf(x) > 0)]

Thus data error iIs
1 n
Ed = EZL(f(Xj):yj)
j=1

What is a priori information?



. scupotvestormachines
Note surface H : f = 0 will separate

"positive" x with f(x) > 0, and "negative" x
with f(x) < 0 :



Fig. 1. Red points have y = + 1 and blue have y = —1 in the
space F. H : f(x) =0 is the separating surface.



Assume some a priori information defined In
terms of an RKHS norm || - ||x sO || f]| k IS
small if a priori assumption Is satisfied.

Let ‘'H be corresponding RHKS.
Will specify desirable norm || - || x later...

Now solve regularization problem for the
above norm and loss V'



fo = arg minl y
> (=g f (%)) +
s AR (D)

7=1



~ supportveciormachines
6. Introduction of slack variables

Define new variables &;, and note if we find
the min over f € ‘H and ¢; of

arg min— Zé} + Al fIk (1a)

fen,& =

with the constraint



yif(X;) > 1—¢;

we get the same solution f.

AN



~ Slckvariablesandsoluion
To see this, note the constraints are

& > max (0,1 —y;f(X;)) = (1 —y;f(X;))s (1b)

which yields the claim.

(Clearly in fact in minimizing sum we will end
up with & = (1 — y;/(X;))+);



-~ Seckvaiabesandsouton
From form (1) above by representer theorem:

f(X) = Zn:ajK(Xaxj)-

Tofinda= | : | (see above material): let

K = (K;;) = K(X;, X})



~ sSlackvaiablesandsoluon
Then

| fll% = <Z%‘K(X»Xj)a ZO@K(X,X@')>

= Zaiaj<K(X, Xj); K(X7 Xz)>

_— ZCLZ'CL]'K(Xi, Xj) = ZCL@CL]'KM = aTKa.
1,J 1,J



~ sSlackvaiablesandsoluon
Thus:

a = argmin = Zé} +xa'Ka (2a)

aclR”

with constraint:

yjzaiK(Xiaxj) >1-¢; (2b)
i=1

£ > 0. (2¢)



~ sSlackvaiablesandsoluon
5. Blas

Given choice of ‘H, K we have concluded

n

f(x) = _a;K(x,X;) (3)

J=1

which optimizes (1), equivalently (2).



. sSeckvaiabesandsoluon
Now can expand class (2) of allowable f ad

hoc. We may feel larger class than H is
appropriate.
Often adding a constant b is useful.

Thus change f(x) by adding a bias term b:

FOX) = a;K(x,x;) +b. (4)
j=1
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The effect. regularization term unchanged

(i.e., we ignore b in the norm || f|| x;
remember any a priori assumption is valid if
It Is useful).

Note this is still a norm on the expanded
space of functions of the form (4), but may
not be positive definite, i.e., || f|| = 0 for
some f of the form (4).




. Seckwariblesandsobton
For example we may have ||b||x = 0.

But: minimization of (1) using (4) still makes
sense and allows possibly richer set of
functions than 'H, as long as the
regularization term || || x still makes sense
for such a richer set.



. Sackvariablesamdsobton
In terms of slack variables &;, new

optimization problem:

Finda= | : | which minimizes:

1 n
—) ¢+ ra'Ka
mn =1



~ Slckvariablesandsoluion
with constraints:

1=1

Y (iaiK(Xi,X]’) -+ b) > 1 — fj (43)

& >0

(quadratic programming problem).



