Lecture 11C (Optional).

MA 751 Part 6 Support Vector Machines

3. An example: Gene expression arrays

Assume we are given a tissue sample *s*, and a *feature vector*

$$\mathbf{X} = \Phi(s) \in \mathbb{R}^{30,000}$$

consisting of 30,000 gene expression levels as read by a gene expression array.

We wish to determine whether the tissue is cancerous or not.

For an **x** which in fact corresponds to cancerous tissue, we will set the corresponding output variable y = 1; otherwise y = -1.

Consider a data set $\mathcal{D} = \{(\mathbf{x}_i, y_i)\}_{i=1}^n$, consisting of pairs of feature vectors \mathbf{x}_i and corresponding (correct) diagnoses $y_i \in \{-1, 1\}$.

Can we find the right function $f_1 : F \to \mathcal{B}$ which generalizes the above examples, so that $f_1(\mathbf{x}) = y$ for all feature vectors?

Easier (see below):

Find a $f: F \to \mathbb{R}$, where $f(\mathbf{x}) > 0$ if $f_1(\mathbf{x}) = 1$; $f(\mathbf{x}) < 0$ if $f_1(\mathbf{x}) = -1$.

4. Support vector machine framework

Recall the *regularization setting:* we have *n* examples

$$D=\{(\mathbf{x}_1,y_1),\ldots,(\mathbf{x}_n,y_n)\},$$
with $\mathbf{x}_i\in\mathbb{R}^d$, $y_i\in\mathbb{B}=\{\pm1\}.$

As mentioned above, we want to find a function $f_1 : \mathbb{R}^d \to \mathbb{B}$ which *generalizes* the above data so that $f(\mathbf{x}) = y$ generalizes the data D.

As mentioned there, we will actually want here something more general: a function $f(\mathbf{x})$ which will best help us decide the true value of y.

It may not need to be that we want $f(\mathbf{x}) = y$, but rather we want

$$\begin{cases} f(\mathbf{X}) >> 1 & \text{if } y = 1 \\ f(\mathbf{X}) << 1 & \text{if } y = -1 \end{cases}$$
 (2)

i.e., $f(\mathbf{x})$ is large and positive if the correct answer is y = 1 (e.g. a chair) and $f(\mathbf{x})$ is large and negative if the correct answer is y = -1 (not a chair). Then the decision rule will be to conclude the value of *y* based on the rule (2). This is made precise as follows. We have the following

optimization criterion for the 'right' f:

$$f = \underset{f \in \mathcal{H}}{\operatorname{arg\,min}} \frac{1}{n} \sum_{i=1}^{n} L(y_i, f(\mathbf{x}_i)) + \lambda \|f\|_K^2,$$

where $||f||_{K} =$ norm in an RKHS \mathcal{H} , e.g.,

$$\|f\|_{K} = \|Af\|_{L^{2}} = \int_{\mathbb{R}^{n}} (Af)^{2} dx.$$

Above 'arg min' denotes the f which minimizes the above expression.

Loss function: hinge loss

 $L(f(\mathbf{X}), y) = (1 - yf(\mathbf{X}))_+,$

where

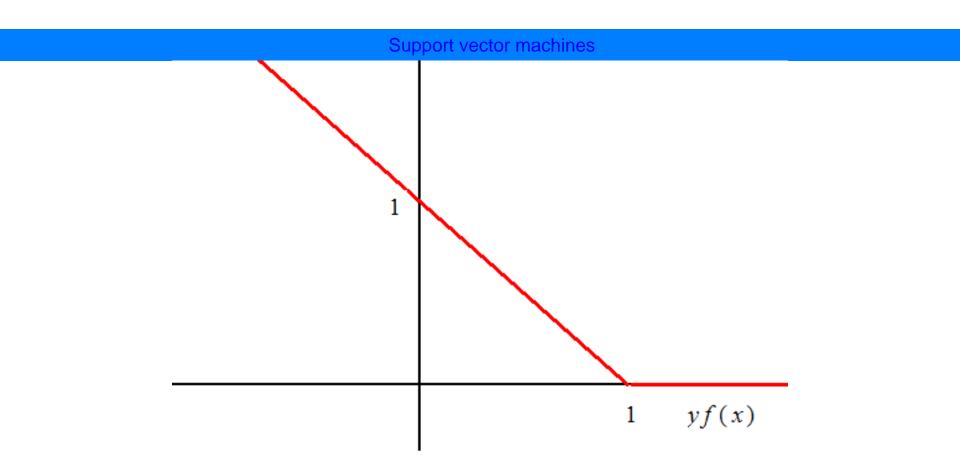
 $(a)_+ \equiv \max{(a,0)}.$

5. More about the hinge loss

Consider the error function

$$L(f(\mathbf{X}), y) = (1 - yf(\mathbf{X}))_+ \equiv \max(1 - yf(\mathbf{X}), 0).$$

 $= \begin{cases} \text{small} & \text{if } y, f(\mathbf{x}) \text{ have same sign} \\ \text{large} & \text{otherwise} \end{cases}$



This is called the *hinge loss function*.

[Notice margin built in: error 0 only if $yf(\mathbf{x}) \ge 1$ (more stringent requirement than just $yf(\mathbf{x}) \ge 0$)]

Thus data error is

$$e_d = \frac{1}{n} \sum_{j=1}^n L(f(\mathbf{x}_j), y_j)$$

What is a priori information?

Note surface H : f = 0 will separate "positive" **x** with $f(\mathbf{x}) > 0$, and "negative" **x** with $f(\mathbf{x}) < 0$:

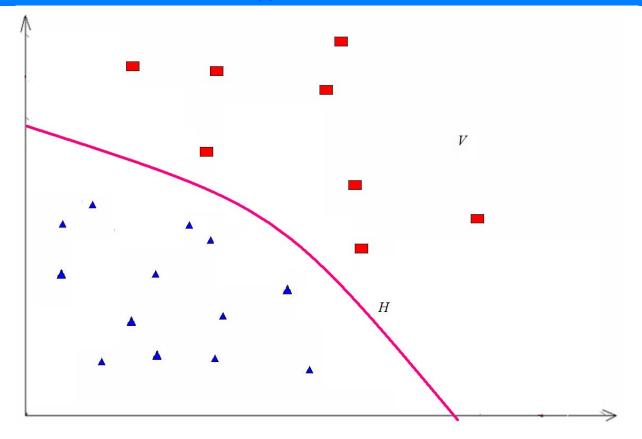


Fig. 1. Red points have y = +1 and blue have y = -1 in the space *F*. $H : f(\mathbf{x}) = 0$ is the separating surface.

Assume some a priori information defined in terms of an RKHS norm $\|\cdot\|_K$ so $\|f\|_K$ is small if a priori assumption is satisfied.

Let \mathcal{H} be corresponding RHKS.

Will specify desirable norm $\|\cdot\|_K$ later...

Now solve regularization problem for the above norm and loss *V*:

$$f_0 = \arg\min_{f \in \mathcal{H}} \frac{1}{n} \sum_{j=1}^n (1 - y_j f(\mathbf{x}_j))_+ + \lambda \|f\|_K^2.$$
 (1)

6. Introduction of slack variables

Define new variables ξ_j , and note if we find the min over $f \in \mathcal{H}$ and ξ_j of

$$\underset{f \in \mathcal{H}, \xi_j}{\operatorname{arg\,min}} \frac{1}{n} \sum_{j=1}^n \xi_j + \lambda \|f\|_K^2$$
(1a)

with the constraint

Slack variables and solution

$y_j f(\mathbf{x}_j) \ge 1 - \xi_j$

$\xi_j \ge 0,$

we get the same solution f.

•

To see this, note the constraints are

 $\xi_j \ge \max(0, 1 - y_j f(\mathbf{x}_j)) = (1 - y_j f(\mathbf{x}_j))_+$ (1b)

which yields the claim.

(Clearly in fact in minimizing sum we will end up with $\xi_j = (1 - y_j f(\mathbf{x}_j))_+$). Slack variables and solution

From form (1) above by representer theorem:

$$f(\mathbf{X}) = \sum_{j=1}^{n} a_j K(\mathbf{X}, \mathbf{X}_j).$$

To find
$$\mathbf{a} = \begin{bmatrix} a_1 \\ \vdots \\ a_n \end{bmatrix}$$
 (see above material): let
 $K = (K_{ij}) = K(\mathbf{x}_i, \mathbf{x}_j)$

Then

$$\|f\|_{K}^{2} = \left\langle \sum_{j} a_{j} K(\mathbf{x}, \mathbf{x}_{j}), \sum_{i} a_{i} K(\mathbf{x}, \mathbf{x}_{i}) \right\rangle$$

$$= \sum_{i,j} a_{i} a_{j} \langle K(\mathbf{x}, \mathbf{x}_{j}), K(\mathbf{x}, \mathbf{x}_{i}) \rangle$$

$$= \sum_{i,j} a_i a_j K(\mathbf{x}_i, \mathbf{x}_j) = \sum_{i,j} a_i a_j K_{ij} = \mathbf{a}^T K \mathbf{a}.$$

Thus:

$$\mathbf{a} = \operatorname*{arg\,min}_{\mathbf{a}\in\mathbb{R}^n} \frac{1}{n} \sum_{j=1}^n \xi_j + \lambda \mathbf{a}^T K \mathbf{a}$$
 (2a)

with constraint:

$$y_j \sum_{i=1}^n a_i K(\mathbf{x}_i, \mathbf{x}_j) \ge 1 - \xi_j$$
 (2b)

$$\xi_j \ge 0. \tag{2c}$$

5. Bias

Given choice of \mathcal{H} , K we have concluded

$$f(\mathbf{x}) = \sum_{j=1}^{n} a_j K(\mathbf{x}, \mathbf{x}_j)$$
(3)

which optimizes (1), equivalently (2).

Now can *expand* class (2) of allowable f ad *hoc*. We may feel larger class than \mathcal{H} is appropriate.

Often adding a constant *b* is useful.

Thus change $f(\mathbf{x})$ by adding a bias term b:

$$f(\mathbf{x}) = \sum_{j=1}^{n} a_j K(\mathbf{x}, \mathbf{x}_j) + b.$$
 (4)

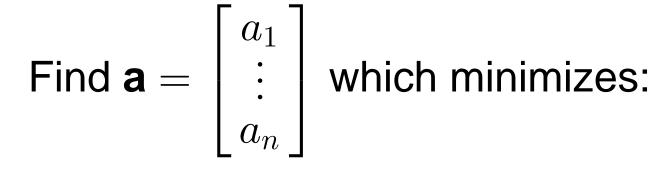
The effect: regularization term unchanged (i.e., we ignore *b* in the norm $||f||_K$; remember any a priori assumption is valid if it is useful).

Note this is still a norm on the expanded space of functions of the form (4), but may not be positive definite, i.e., ||f|| = 0 for some f of the form (4).

For example we may have $||b||_K = 0$.

But: minimization of (1) using (4) still makes sense and allows possibly richer set of functions than \mathcal{H} , as long as the regularization term $||f||_K$ still makes sense for such a richer set. Slack variables and solution

In terms of slack variables ξ_i , new optimization problem:



$$\frac{1}{n} \sum_{j=1}^{n} \xi_j + \lambda \mathbf{a}^T K \mathbf{a}^T K$$

with constraints:

$$y_j\left(\sum_{i=1}^n a_i K(\mathbf{x}_i, \mathbf{x}_j) + b\right) \ge 1 - \xi_j$$
 (4a)

$\xi_i \ge 0$

(quadratic programming problem).