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MA 751 Part 7

Solving SVM: Quadratic Programming

1. Quadratic programming (QP):
Introducing Lagrange multipliers o;; and

(can be justified in QP for inequality as well
as eqguality constraints) we define the

Lagrangian






.~ sovingusingquadraticprogramming
By Lagrange multiplier theory for constraints

with inequalities, the minimum of this In
aabagva — (()417”'70471)7 M= (:ulw”mun)

IS a stationary point of this Lagrangian
(derivatives vanish) is maximized wrt a, b, &,
and minimized wrt the Lagrange multipliers,
o, 1 Subject to the constraints



Derivatives:
oL L
% =0 = ZO&jyj = 0; (6a)
j=1
0L 1
ag.:()ig—aj—,uj:(). (6b)

Plugging in get reduced Lagrangian
L*(a, o)
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where
;. 00 0
Y = : ;
0 0 ... wyp1 O
0 0 0 Yn

(note (6) eliminates the ¢; terms) with same
constraints (5).



.~ sovingusingquadraticprogramming
Now:
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.~ sovingusingquadraticprogramming
Plug in for a; using (7), replacing Ka by

-~ K'Y« everywhere:

where P =Y KY"'.



-~ sovingusingquadaticprogramming
Constraints: «;, ;> 0; by (6b) this implies

1
0<a;<—.
n

- _ 1 =1
Define (' = o = 50

[note this does not mean complex conjugate!]

Then want to minimize (division by constant
2X OK - does not change minimizing «)



subject to constraint 0 < o; < ('; also

convenient to include (6a) as constraint:

a -y = 0. Thus constraints are:
0<a<(; a-y=0.



.~ sovingusingquadraticprogramming
Summarizing above relationships:

FX) = a;K(x,x;) +b,
=1

where

Qj — 2)\53',



. sovingusngquadraticprogramming
and o, are the (unconstrained) minimizers

of (8), with
P=YKY"'.

After a; are determined, b must be computed
directly by plugging into (4b).



.~ sovingusingquadraticprogramming
More briefly,

fx) =) @y (%, x;) +,
=1

where &; minimize (8).

Finally, to find b, must plug into original
optimization problem: that is, we minimize
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.~ sovingusingquadraticprogramming
2. The RKHS for SVM

General SVM: solution function is (see (4)
above)

F(x) = ZajK(x,xj) + b,

with sol'n for a; given by quadratic
programming as above.



.~ sovngusngquadratcprogramming
Consider a simple case (linear kernel):

K(X,X;) =X+ X;.



- RkHSfasw
Then we have

f(x):Z(ajxj)-Xerzw-Xer,

j
where

W = Z&jxj'.
J

This gives the kernel. What class of
functions Is the corresponding space H?



-~ _RkHsfosw
Claim it is the set of linear functions of x:

H = {w - x|w € R"}
with inner product
(W1 - X, Wg - X) = W7 - Wo

is the RKHS of K(x,y) above.



S Resfrsw
Indeed to show that K(Xx,y) =X -y is the

reproducing kernel for ‘H, note that If
f(X) =x-w € H, then recall

K(X,y)=X"Y.
So
JC)ECY)m=w-y = f(y),

as desired.



- ReWsESW_
Thus the matrix K;; = X; - X;, and we find the

optimal separator
f(X) = w X

by solving for w as before.

Note when we add b to f(x) (as done earlier),
have all affine functions f(x) =w - X +b.



S ReEsfrsww
Note above inner product gives the norm

n
Iw - x|7 = [wlfE: = ) _w.
j=1

Why use this norm? A priori information
content.

Final classification rule: f(x) >0 = y = 1;
fX) <0 = y=-1.



S ReEsfrsww
Learning from training data:

NF = (FO0)ses X)) = (W )

Thus
H={f(X)=w-x:weR"}

IS set of linear separator functions (known as
perceptrons in neural network theory).



o RkEsfesw
Consider separating hyperplane H : f(x) = 0:



S ReEsfrsww
3. Toy example:




S Bampe
Information

Nf = {1011, [(1,-1), 1,

(=1,1), 1], [(=1,-1), 1]}

(red = +1; blue = —1);



SO

f=w-X+0b
:ZQZ(XZX)—F[)
- N——

K(X;,X)

W — E a;X;.
1




L) = 13001 = £y + 5wl (©)

J

(we let A = 1/2; minimize wrt w, b).



S e
Equivalent:



S Bampe
Define kernel matrix

2 0 -2 0

0 2 0 =2

Kij:K(XZ',Xj) = Xi X = _9 0 9 0
0 -2 0 2




4
= 2 (Za?) — 4(&1&3 -+ &2&4).

where a =




S Bampe
Formulate

4
L(f)=L(ab,&) = iij + %aTKa
j=1

4

A
iZfz’ + (2%2) — 2(a1a3 + asay)
=1

J=1



= —
subject to (Eq. 4a):

£ > (11— ly;(Ka)j+ b)), £ > 0.

Lagrange multipliers o = (as, ..., an)?,
= (p1,...,un)" (see (4b)):



S e
optimize

L(a7 b7§7 a’l’l')

— 124:& +1aTKa
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_|_
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j=1



S Bampe
with constraints

o, b > 0.

Solution has (see (7) above)

a=2\Y 'a



(recall ] ] ]
y1 0O 0 1 0 O 0

10 w ... 0| |01 0 0
L I O
0 0 v [0 0 0 -1

)

and (/a) above)
1

o= —o = C.

2\



S e
Finally optimize (8):

A
1
L1 — ZEZ — §_TP6,
1=1

where

P=YKY!



0

—1

0 0

0

—1

0 0







S Bampe
constraint Is

1 1
D<a<(C = == 1
<a<(C v (10a)

Thus optimize

4 4
Ly=) - (Za? + Qa0 + 2a2a4)
1=1 1=1



where

U= 0] +Q3;, U= Q9+ Q4.



S e
Minimizing:

1 —2u=0; 1—-20=0



S pampe
Thus we have

o, — —

4

for all = (recall the constraint (10a)). Then

1/4

oo 1/4
=2\ = = 1/4

1/4










S e
Now we find b separately from original

equation (9); we will minimize with respect
to b the original functional

1

L(f) =7 (1= W-x;+b)y), +wf (11



_ Z{u (L)) - (1B,

P = (14 b><—1>1++[<1—<—1+b><—1>]+}



= {[bl, B} L

Clearly the above is minimized when b = 0.

Thusw = (1,0); b =0 =
fX)=w-X+b=ux






S pampe
4. Other choices of kernel

Recall iIn SVM we have used the kernel
K(X7 y) = X y

There are many other choices of kernel,
e.g.,

K(x,y) =e Y or K(x,y) = (14 |x-y|)"

note - we must choose a kernel function
which Is positive definite.



S e
How do these choices change the

discrimination function f(x) in SVM?



- otherkemels
Ex 1: Gaussian kernel

X—y

Ka(x,y) =e 2

[can show pos. def. Mercer kernel]

SVM: from (4) above have

|xx

f(X) = Z (X, X;) +b—Za] e

J

where examples X; In F' have known



S Otherlemes
classifications y;, and a;, b are obtained by

guadratic programming.

What kind of classifier is this? It depends on
o (see Vert movie).

Note Moviel varies ¢ In the Gaussian (¢ = oc
corresponds to a linear SVM); then movie2
varies the margin |W1| (in linear feature

space F;) as determined by changing A or

equivalently C' = 5.



- otherkemels
5. Software available

Software which implements the quadratic
programming algorithm above includes:

« SVMLIght: http://svmlight.joachims.org

« SVMTorch:
http://www.idiap.ch/learning/SVMTorch.html

e LIBSVM:
http://wws.csie.ntu.edu.tw/~cjlin/libsvm



- oterkemes
A Matlab package which implements most of

these Is Spider:

http://www.kyb.mpg.de/bs/people/spider/what
Isit.html



S oterkemes
6. Example application: handwritten digit

recognition - USPS (Scholkopf, Burges,
Vapnik)

Handwritten digits:



Q ¢ o 0 /¢
VAR AR AV 4

2 2 =2z 2 2
J 3 3 3 3

S 4 ¥ KN A4
S &5 45 5 &
© 6 ¢ & C

7 7 7 7 7

yF 5 § &8 s
7 9 9 Q ¢




S mampes
Training set: 7300; Test set: 2000

10 class classifier; i class has a separating
SVM function

fi(X) =W; - X +b;
Chosen class Is

Class = argmax f;(X).
i€{0,...,9}



o mames
¢ : digit ¢ — feature vector &(g) =x € F

Kernels in feature space F'.

X=X
RBF: K(X;,X;) = e 2
Polynomial: K = (x; - x; + 6)“
Sigmoidal: K = tanh(x(X; - X;) + 6)

Results:



o mames
polynomial: K(x,y) = ((x - y)/256)d6gree
degree 1 2 3 4 D 6
raw error/% | 8.9 | 4.7 | 4.0 | 42| 45| 4.5
av. Fr of SVs | 282 | 237 | 274 | 321 | 374 | 422

RBF: K(x,y) = exp (—||x — y||*/(256 ¢?))

o’ 1.0 0.8 ] 0.5 0.2 0.1
raw error/% 47 43| 44| 44| 45
av. # of SVs 234 | 235 | 251 | 366 | 722
sigmoid: K(x,y) = 1.04tanh(2(x -y)/256 — O)

© 09 10 1.2 1.3 | 14
raw error/% 48 [ 4.1 | 43| 44| 48
av. # of SVs 242 | 254 | 278 | 289 | 296
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Computational Biology Applications

References:

T. Golub et al Molecular Classification of
Cancer: Class Discovery and Class
Prediction by Gene Expression. Science
1999.

S. Ramaswamy et al Multiclass Cancer
Diagnosis Using Tumor Gene Expression
Signatures. PNAS 2001.



o Appleations
/. Gene expression arrays for cancer

classification

Goal: Infer cancer genetics by looking at
microarray.

Gene expression array reveals expression
patterns and can hopefully be used to
discriminate similar cancers, and thus lead
to better treatments.



Usual problem: small sample size (e.g., 50
cancer tissue samples), high dimensionality
(e.g., 20-30,000). Curse of dimensionality.

Example 1. Myeloid vs. Lymphoblastic
leukemias

ALL: acute lymphoblastic leukemia
AML: acute myeloblastic leukemia

SVM training: leave one out cross-validation



SVM 35
W a5
L 35
SVM 23
W 23
kNN 23
SVM 7
W 7
kNN 7
T 41 141 127 04 100
W 41 141 12T 04 3
MM 41 41 | 02T 04 Li

S. Mukherjee

fig. 1: Myeloid and Lymphoblastic Leukemia classification by SVM
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Fig 2: AML vs. ALL error rates with increasing sample size



In above figure the curves represent error
rates with split between training and test
sets. Red dot represents leave one out
cross-validation.



