Machine learning: Boosting

1. Basic definition:

Assume again we have a classification task (e.g. cancer classification) with data

$$D = \{\mathbf{X}_i, y_i\}_i.$$

and $y_i = \pm 1$.

Boosting

Assume we have a classifier $p(\mathbf{x})$ which takes feature vector \mathbf{x} , and classify

$$\begin{cases} y = 1 & \text{if } p(\mathbf{X}) > 0 \\ y = -1 & \text{if } p(\mathbf{X}) < 0 \end{cases}$$

Assume $p(\mathbf{x})$ is 'weak' - i.e., its predictions are not always correct.

Now assume a family $\{p_j(\mathbf{x})\}_{j=1}^m$ of different weak classifiers.

Boosting

A *boosting classifier* takes a linear combination of these classifiers to form a better one, for example,

$$f(\mathbf{x}) = \sum_{i=1}^{m} a_i p_i(\mathbf{x}),$$

where, e.g., $f(\mathbf{x}) \ge 0$ selects the + class, and otherwise the - class.

2. AdaBoost (adaptive boosting) algorithm (Freund & Schaphire, 1997)

Consider data $D = {\mathbf{x}_i, y_i}_{i=1}^n$. Weigh each data point (\mathbf{x}_i, y_i) equally with weight $W_1(i) = \frac{1}{n}$.

Assume $\mathbf{x}_i \in \mathbf{F}$ = feature space.

Goal: build a classifier $f(\mathbf{x})$ which generalizes data set D to predict class y of \mathbf{x} .

Let \mathcal{H} = space of allowed classifier functions f

AdaBoost: introduction

Idea: We will take random samples from data set D (with repetition) according the weight distribution W_1 , and later some distributions W_2, W_3, \ldots which emphasize the examples \mathbf{x}_i we have misclassified previously.

Specifically: train initial classifier $h_1(\mathbf{x}) : \mathbf{x} \to \{\pm 1\}$ which minimizes error with respect to weight distribution W_1 .

That is:

AdaBoost: introduction

 h_1 = function h which minimizes weighted number of errors

$$= \text{function } h \text{ which minimizes error}$$

$$\sum_{i=1}^{n} W_1(i) I(y_i \neq h(\mathbf{x}_i))$$

$$= \underset{h \in \mathcal{H}}{\operatorname{argmin}} \sum_{i=1}^{n} W_1(i) I(y_i \neq h(\mathbf{x}_i)) \tag{1}$$

where

$$I(y_i \neq h(\mathbf{x}_i)) = \begin{cases} 1 & \text{if } y_i \neq h(\mathbf{x}_i) \\ 0 & \text{otherwise} \end{cases}$$

3. The algorithm:

1. Define

 ϵ_1 = minimal *value* of error in (1).

(i.e. smallest value of the sum (1))

Require: $\epsilon_1 \leq .5$; otherwise stop (then have a bad family of classifiers *h*; need at least 50% accuracy).

2. Choose α_1 ; typically

$$\alpha_1 = \frac{1}{2} \ln \frac{1 - \epsilon_1}{\epsilon_1}$$

3. Update weigths *W*:

$$W_2(i) = rac{W_1(i)e^{-lpha_1 y_i h_1(i)}}{Z_1(lpha_1)},$$

where Z_1 = normalizing constant to make $\{W_2(i)\}_i$ a probability distribution (over *i*) which adds up to 1.

Now $\{W_2(i)\}_i$ form a family of weights which we can use to 're-sample' the data set *D*, and form a new classifier h_2 .

Specifically

$$h_2 = \operatorname*{argmin}_{h \in \mathcal{H}} \sum_{i=1}^n W_2(i) I(y_i \neq h(\mathbf{x}_i))$$

(note that if weight $W_2(i) > \frac{1}{n}$ this is equivalent to 'oversampling' data point \mathbf{x}_i ; otherwise 'undersampling' \mathbf{x}_i)

4. Generally, define

$$h_t = \underset{h \in \mathcal{H}}{\operatorname{argmin}} \sum_{i=1}^n W_t(i) I(y_i \neq h(\mathbf{x}_i))$$
(2a)

Again let $\epsilon_t = \text{smallest value of the sum in (2a)}$

and

$$\alpha_t = \frac{1}{2} \ln \frac{1 - \epsilon_t}{\epsilon_t}.$$

(3)

Then define

$$W_{t+1}(i) = rac{W_t(i)e^{-lpha_t y_i h_t(i)}}{Z_t},$$

and

 Z_t = normalizing constant as earlier.

$\begin{array}{c} \mbox{AdaBoost algorithm} \\ \mbox{Then after } T \mbox{ steps form final classifier} \end{array}$

$$f(\mathbf{x}) = \operatorname{sgn}\left(\sum_{t=1}^{T} \alpha_t h_t(\mathbf{x})\right).$$

4. Observations about AdaBoost

Note that the updating equation (3a) has property

$$e^{-lpha_{t-1}y_ih_{t-1}(\mathbf{x}_i)}iggl\{egin{array}{cc} <1 & ext{if } y_i=h_{t-1}(\mathbf{x}_i)\ >1 & ext{if } y_i
eq h_{t-1}(\mathbf{x}_i). \end{array}$$

Thus after we find best classifier h_{t-1} for sample distribution W_{t-1} , examples \mathbf{x}_i which h_{t-1} identified incorrectly are weighted more for the selection of h_t .

Thus the classifier based on distribution W_t will better identify examples that the previous weak classifier missed.

AdaBoost: additional observations

Recall normalization constant

$$Z_t(\alpha_t) = \sum_i W_t(i) e^{-\alpha_t y_i h_t(i)}.$$
(4)

This is weighted measure of the total error at the previous step, since

$$y_i h_t(i) = \begin{cases} 1 & \text{if } h_t(i) = y_i \text{ (correct prediction)} \\ -1 & \text{if } h_t(i) \neq y_i \text{ (incorrect prediction)} \end{cases}$$

which means $e^{-\alpha_t y_i h_t(i)}$ large if $h_t(i) \neq y_i$.

AdaBoost: additional observations Can show our definition (3) for α_t minimizes $Z_t(\alpha_t)$ at each step (just use calculus to minimize (4) above w/ respect to the variable α_t).

Note: can also show

$$Z_t = 2\sqrt{\epsilon_t(1-\epsilon_t)}$$

for above choice of α_t .

Recall reweighting formula:

AdaBoost: additional observations

$$W_{t+1}(i) = \frac{W_t(i)e^{-\alpha_t y_i h_t(\mathbf{x}_i)}}{Z_t} \quad \stackrel{\text{recursion}}{=} \frac{e^{-\left(y_i \sum\limits_{q=1}^t \alpha_q h_q(\mathbf{x}_i)\right)}}{n \prod\limits_{q=1}^t Z_q}.$$

(recall initial value $D_1(i) = \frac{1}{n}$).

AdaBoost: additional observations Can also show: fact that α_t are chosen to minimize Z_t implies that

$$\sum_{i:h_t(\mathbf{x}_i)=y_i} W_{t+1}(i) = \sum_{i:h_t(\mathbf{x}_i)\neq y_i} W_{t+1}(i)$$

this shows that half the *new* weight is focused on the misclassified examples for previous classifier h_t (where $h_t(\mathbf{x}_i) \neq y_i$).

Example 1:

Training set:

Blue: N(0,1)

J. Matas, J. Sochman Red: $rac{1}{r\sqrt{8r^2}}e^{-1/2(r-4)^2}$

AdaBoost: examples (distribution is radial with uniform angular distribution)

Select weak (always linear) classifier with smallest weighted error (all points equal at this time). $W_1(i) = \frac{1}{n}$.

Re-weighting formula: find $W_2(i)$. Give more weight to misclassified examples;

AdaBoost: examples new classifer (focuses more on higher weights):

Reweigh again based on previously misclassified examples, etc.

AdaBoost: examples Summary: first classifier at t = 1 and error rate:

Fig. 1: Here and below shaded part is currently classified red (figures due to J. Matas, J. Sochman)

Second classifier: t = 2 and error rate:

t = 7:

Note misclassified examples closest to the boundary are the ones which at end get highest weight:

Data from the IDA repository (Ratsch:2000):

	Input	Training	Testing	Number of	
	dimension	patterns	patterns	realizations	
Banana	2	400	4900	100	
Breast cancer	9	200	77	100	
Diabetes	8	468	300	100	
German	20	700	300	100	
Heart	13	170	100	100	
Image segment	18	1300	1010	20	
Ringnorm	20	400	7000	100	
Flare solar	9	666	400	100	
Splice	60	1000	2175	20	
Thyroid	5	140	75	100	
Titanic	3	150	2051	100	
Twonorm	20	400	7000	100	
Waveform	21	400	4600	100	

Baseline: AdaBoost with RBF network weak classifiers from (Ratsch-ML: 2000).

Blue: Adaboost (discrete) Green: Continuous Adaboost Red: Adaboost with totally corrective step (TCA) Cyan: Continuous Adaboost with totally corrective step

Dashed lines: training (leave one out) error; solid - test error

Above dual distribution example

(Serum antibodies as predictors of thyroiditis)

Breast cancer classification

Diabetes from blood markers

Heart disease from blood markers All figures: J. Matas and J. Sochman (2005)

Algorithm	Gene limit	ALL-AML	HCC	ER	Colon	LN	Brain
Adaboost	10	6.2	7.8	19.9	25.3	40.4	42.3
Adaboost-VC	10	3.9	5.6	18.1	24.4	43.8	41.1
Adaboost-NR	10	3.5	6.0	19.5	25.1	42.7	41.2
Adaboost-PL	10	7.0	7.2	20.6	23.4	36.5	41.9
Arc-x4-RW	10	6.5	8.2	19.8	25.0	39.1	41.4
Arc-x4-RW-NR	10	3.3	5.5	17.8	24.7	42.1	40.7
SVM-RFE	10	13.4	8.6	20.9	19.2	48.4	39.2
Wilcoxon/SVM	10	6.4	6.7	23.2	24.3	35.4	39.3
Adaboost	100	5.2	6.9	16.1	23.4	35.4	38.2
Adaboost-VC	100	2.8	4.8	13.8	22.6	42.8	38.2
Adaboost-NR	100	2.7	4.9	13.2	21.9	40.6	36.5
Adaboost-PL	100	5.0	5.4	17.2	23.2	36.2	38.6
Arc-x4-RW	100	5.4	7.4	16.6	23.7	36.9	38.0
Arc-x4-RW-NR	100	2.6	4.8	12.8	21.6	41.1	36.1
SVM-RFE	100	6.5	6.7	12.6	20.7	48.1	35.7
Wilcoxon/SVM	100	3.3	4.1	17.5	23.6	40.4	37.8

Long and Vega (2003)

Adaboost vs. other classifiers in microarray cancer diagnosis (cross-validation error rates)

AdaBoost: examples HCC = Hepatocellular carcinoma ER = estrogen response in breast cancer LN = lymph node spread of cancer