Decision Trees and Random Forests

Reference: Leo Breiman, http://www.stat.berkeley.edu/~breiman/RandomForests

1. Decision trees

Example (Guerts, Fillet, et al., Bioinformatics 2005):

Patients to be classified: normal vs. diseased

Classification of biomarker data: large number of values (e.g., microarray or mass spectrometry analysis of biological sample)

Decision trees Mass spectrometry (m/z) parameters or gene expression parameters (around 15k values)

A1	A2	 An	Class
0.3	28.34	 123	Normal
-123	0	 17	
56	-123	 -23	Normal
		 	Disease
89	-123	 12	Disease

Given new patient with biomarker data, is s/he normal or ill?

Needed: selection of relevant variables from many variables

Number *n* of known examples in $D = \{(\mathbf{x}_i, y_i)\}_{i=1}^n$ is small (characteristic of machine learning/data mining problems)

Assume we have for each biological sample a feature vector **x**, and will classify it:

diseased: y = 1; normal: y = -1.

Goal: find function $f(\mathbf{x}) \approx y$ which predicts y from \mathbf{x} .

How to estimate error of $f(\mathbf{x})$ and avoid over-fitting the small dataset D?

Use cross-validation, i.e., test predictor $f(\mathbf{x})$ in an unexamined part of sample set D.

For biological sample, feature vector $\mathbf{x} = (x_1, \dots, x_d)$ consists of *features* (or *biomarkers* or *attributes*) $x_i = A_i$ describing the biological sample from which \mathbf{x} is obtained. The decision tree approach Decision tree approach to finding predictor $f(\mathbf{x}) = y$ from data set *D*:

- \bigoplus form a tree whose nodes are features (attributes) $x_i = A_i$ in **x**
- \oplus decide which features A_i to consider first in predicting y from **x**

i.e., find features A_i with highest information gain - place these at top of tree

The decision tree approach

then use recursion - form sub-trees based on attributes not used in the higher nodes:

Advantages: interpretable, easy to use, scalable, robust

Decision tree example Example 1 (Moore): UCI data repository (http://www.ics.uci.edu/~mlearn/MLRepository.html)

MPG (miles per gallon) ratings of cars: Goal: predict MPG rating of a car from a set of features/attributes A_i

Examples (each row is feature set for a sample car):

mpg	cylinders	displacement	horsepower	weight	acceleration	model year	maker
good	4	low	low	low	high	00to03	asia
bad	6	medium	medium	medium	medium	95to99	america
bad	4	medium	medium	medium	low	00to03	europe
bad	8	high	high	high	low	95to99	america
bad	6	medium	medium	medium	medium	95to99	america
bad	4	low	medium	low	medium	95to99	asia
bad	4	low	medium	low	low	00to03	asia
bad	6	high	high	high	low	00to03	america
:	1			-			-
:	-	:		-			-
1	-	-		-		-	-
bad	8	high	high	high	low	95to99	america
good	8	high	medium	high	high	04to08	america
bad	8	high	high	high	low	00to03	america
good	4	low	low	low	low	04to08	america
bad	6	medium	medium	medium	high	00to03	america
good	4	medium	low	low	low	04to08	america
good	4	low	low	medium	high	04to08	america
bad	8	high	high	high	low	95to99	america
good	4	low	medium	low	medium	00to03	europe
bad	5	medium	medium	medium	medium	00to03	europe

R. Quinlan

Simple assessment of information gain: how much does a particular feature A_i help to classify a car with respect to MPG?

Begin the decision tree: start with most informative criterion, cylinders:

Recursion: build next level of tree. Initially have:

Now build sub-trees: split each set of cylinder numbers into further groups-

Resulting next level:

Recursively build a tree from the seven records in which there are four cylinders and the maker was based in Asia (Similar recursion in the other cases)

Final tree:

Points:

- Don't split node if all records have same value (e.g. cylinders = 6)
- Don't split node if can't have more than 1 child (e.g. acceleration = medium)

Pseudocode:

Program Tree(Input, Output)

If all output values are the same, then return leaf (terminal) node which predicts the unique output If input values are balanced in a leaf node (e.g. 1 good, 1 bad in acceleration) then return leaf predicting majority of outputs on same level (e.g. bad in this case) Else find attribute A_i with highest information gain

If attribute A_i at current node has m values

then Return internal (non-leaf) node with m children Build child i by calling Tree(NewIn, NewOut), where NewIn = values in dataset consistent with value A_i and all values above this node

Another decision tree: prediction of wealth from census data (Moore):

wealth value	E 901	1.64	F					
			(tool	r.				
22800 7104								
			pek	ance	= 0.000			
			7		~			
		m	ettal is Marri	**	marital int M	niét	1	
		7545 8114			15291 1050			
	pchance = 0.000		pchance = 0.000					
	2	5	- 1	-	1	-		
napitalgain	< 5170	capi	talgain >+ 6	178	capitalgain 4	7262	capitalgain >= 72	82
7539 5001		6 1	1080		15292 775		9 276	
pchance = 0	000	Pierd	Left risk		pohance = 0.00		Predictrich	
1	-	-			1	-		
edunum < 12		0	edunum ># 12		+dunum < 12		edunum >= 13	
0177 2637			1362 2404		12550 298		2732 477	
pcha	ince = (000	Predict rich		pchance = 0.	200	Predict poor	
-	1	1	10		1	2		
edunu	m < 9	edun	en se g	8.es	m moked + 42		ett washed by 42	
1364	1364 142 4811		2075 104		20 137 2		2130 181	
Predic	Predict next Indu		tes = 0.000	peh	unce = 0.000		Pradict poor	
		/	/		1-	_		
capital	lans v S	126	canitation >	- 18	15 444 1 211	000	444 1= 31,9983	
4751	4751 2164 62 211		5770 14		4050 (22)			
achanics = 0.000 Findlet cith		-	Pradict page Pradict page					
		2						
Ana 5 30 2078 Ana 30 30 2078								
013 144				3838 2020				
		-	Piedid pop	-	Predict page	-		

Prediction of age from census:

Prediction of gender from census:

2. Important point: always cross-validate

It is important to test your model on *new* data (test data) which are different from the data used to train the model (training data).

This is cross-validation.

Cross-validation error -2% is good; 40% is poor.

3. Background: mass spectroscopy

What does a mass spectrometer do?

- **1.** It measures masses of molecules better than any other technique.
- 2. It can give information about chemical (in particular protein) compositions of tissue samples.

Mass spectroscopy

How does it work?

- **1.** Takes unknown molecule M, adds *i* protons to it giving it charge + i (forming MH_i^+)
- **2.** Accelerates ion MH_i^+ in *known* electric field *E*.
- **3.** Measures time of flight along a *known* distance *D*.
- 4. Time T of flight is inversely proportional to electric charge i and proportional to mass m of ion.

Mass spectroscopy

Thus

$$T \propto m/i$$

So mass spectrometer measures ratio of mass m and charge i (also known as z), i.e., m/i = m/z.

With a large number of molecules in a biosample, this gives a spectrum of z/m values, which allows identification of molecules in sample (below IgG = immunoglobin G)

Mass spectroscopy Mass spectrum shows the results:

Mass spectroscopy ESI Spectrum of Trypsinogen (MW 23983)

Mass spectroscopy4. Dimensional reduction (G. Izmirlian):

Sometimes we perform a *dimension reduction* by reducing mass spectrum information of (human) subject *i* to store only peaks:

Mass spectroscopy

Then have (compressed) peak information in feature vector

$$\mathbf{X} = (x_1, \ldots, x_d),$$

with x_k = location of k^{th} mass spectrum peak (above a fixed threshold).

Compressed or not, outcome value to feature vector \mathbf{x}_i for subject *i* is $y_i = \pm 1$.

5. Random forest example

Example (Guerts, et al.):

Normal/sick dichotomy for RA and for IBD based on blood sample protein markers (above - Geurts, et al.):

We now build a forest of decision trees based on differing attributes in the nodes:

87

Note: different trees have access to a *different* random sub-collection of the feature set $\{A_i\}_{i=1}^n$, or to a *different* random subcollection of the data.

For example: Could use mass spectroscopy data as above to determine disease state

Mass Spec segregates proteins through spectrum of m/z ratios (again m = mass; z = charge).

Random Forests:

Advantages: accurate, easy to use (Breiman software), fast, robust

Disadvantages: difficult to interpret

More generally: How to combine results of different predictors (e.g. decision trees)?

Random forests are examples of *ensemble methods*, which combine predictions of weak classifiers $p_i(\mathbf{x})$.

Ensemble methods: observations

1. Boosting: As seen earlier, take linear combination of predictions $p_i(\mathbf{x})$ by classifiers *i* (assume these are decision trees)

$$f(\mathbf{x}) = \sum_{i} a_{i} p_{i}(\mathbf{x}), \tag{1}$$

where
$$p_i(\mathbf{x}) = egin{cases} 1 & ext{if } i^{th} ext{ tree predicts illness} \ -1 & ext{otherwise} \end{cases}$$

and predict y = 1 if $f(\mathbf{x}) \ge 0$ and y = -1 if $f(\mathbf{x}) < 0$.

Ensemble methods: observations

2. Bagging: Take a vote: majority rules (equivalent in this case to setting $a_i = 1$ for all *i* in (1) above).

Example of a **Bagging** algorithm is *random forest*, where a forest of decision trees takes a vote.

General features of a random forest:

If original feature vector $\mathbf{x} \in \mathbb{R}^d$ has d features A_1, \ldots, A_d ,

Each tree uses a random selection of m ≈ √d features {A_{i_j}}^m_{j=1} chosen from all features A₁, A₂,..., A_d; the associated feature space is different (but fixed) for each tree and denoted by F_k, 1 ≤ k ≤ K = # trees.

(Often K = # trees is large; e.g., K = 500).

 For each split in a tree node based on a given variable choose the variable A_i to be used from its information content.

To compute information content of a node:

Assume input set to node is S: then information content of node N is

 $I(N) = |S| H(S) - |S_L| H(S_L) - |S_R| H(S_R),$

where

|S| = input sample size; $|S_{L,R}| = \text{size of left, right}$ subclasses of S

$$H(S) =$$
 Shannon entropy of $S = -\sum_{i=\pm 1} p_i \log_2 p_i$

with

 $p_i = \widehat{P}(C_i|S) =$ proportion of class C_i in sample S.

[later we will use *Gini index*, another criterion]

Thus H(S) = "variablity" or "lack of full information" in the probabilities p_i forming sample S input into current node N.

I(N) = "information from node N".

For each variable A_i , average over all nodes N in all trees involving this variable to find average information content $H_{av}(A_i)$ of A_i .

- (a) Rank all variables A_i according to information content
- (b) For each fixed $n_1 < n$ rebuild the Random Forest using only the first n_1 variables.
- Select n_1 which minimizes prediction error.

Geurts, et al.

Random forests: application Application to:

- early diagnosis of Rehumatoid arthritis
- rapid diagnosis of inflammatory bowel diseases (IBD)

3 patient groups (University Hospital of Liege):

	RA	IBD
Disease patients	34	60
Negative controls	29	30
Inflammatory controls	40	30
Total	103	120

Mass spectra obtained by SELDI-TOF mass spectrometry on protein chip array proteins:

- Hydrophobic (H4) chips
- weak cation-exchange (CM10) chips
- strong cation-exchange (Q10) chips

Feature vectors for tissue classification: $\mathbf{x} \in F$ consists of about 15,000 Mass Spectometry values in each case.

Guerts, et al.

Random forests: application Effective dimension reduction method: Discretize horizontally and vertically to go from 15,000 to 300 variables

Random forests: application Sensitivity and specificity:

RA

Random forests: application Above: accuracy measures for DT=Decision tree; RF=random forest; kNN = k-nearest neighbors; BA = bagging (bootstrapped resampled tree ensembles); BO = Boosting;ET = Extra trees (variation on RF)

Random forests: application Note on sensitivity and specificity: use confusion matrix

Actual Condition

Test outcome		True	False
	Positive	TP	FP
	Negative	FN	ΤN

Sensitivity =
$$\frac{TP}{TP + FN} = \frac{TP}{\text{Total positives}}$$

Specificity =
$$\frac{TN}{TN + FP} = \frac{TN}{\text{Total negatives}}$$

Positive predictive value = $\frac{TP}{TP+FP} = \frac{TP}{\text{Total predicted positives}}$

Random forests: application Variable ranking on the IBD dataset:

10 most important variables in spectrum:

RF-based (tree ensemble) - based variable ranking vs. variable ranking by individual variable *p* values:

IBD

6. RF software:

Spider:

http://www.kyb.tuebingen.mpg.de/bs/people/spider/wh atisit.html

Leo Breiman: http://www.stat.berkeley.edu/~breiman/RandomForest s/cc_software.htm

WEKA machine learning software http://www.cs.waikato.ac.nz/ml/weka/ http://en.wikipedia.org/wiki/Weka_(machine_learning)