Mathematics of Random Forests

1. Probability: Chebyshev inequality

Theorem 1 (Chebyshev inequality): If X is a random
variable with standard deviation ¢ and mean u, then
for any e > 0,

0_2

P(X —ul>¢) = .



Probability background
Theorem 2 (Bounded convergence theorem): Given a
sequence hi(X), ho(X),...of fns. with hy(x) < M for
fixed M > 0) defined on a space S of finite measure,
then

Iim/dx hi(X) — [ dx limhg(x),
s

k—o0 —x® Jg k—o0

l.e., the limit and integration can be interchanged
(assuming the limits exist).



Probability background
Recall:

Def. 1 (Indicator function): For any event A C () of the
sample space, define the indicator function (also
known as characteristic function) of A to be

I(z) = 1 fze A |1 if Aoccurs
A =00 otherwise ~ | 0 otherwise



2. Classification trees

Assume we have n patients (samples), and (e.g., mass
spectroscopy) feature vectors {x;}! ; with outcomes

Yi.

Data:
D= {(Xh yl)a M (Xna yn)}

Each feature vector

Xp = (Lljkl, ,xkd).



Classification trees
Formal definitions:

Definition 2: A classification tree is a decision tree in
which each node has a binary decision based on
whether z; < a or not for a fixed a (can depend on
node).



Classification trees
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Classification trees
The top node contains all of the examples (X, yx), and
the set of examples is subdivided among the children
of each node according to the classification at that
node.

The subdivision of examples continues until every node
at the bottom has examples which are in one class
only.

At each node, feature z; and threshold « are chosen to
minimize resulting 'diversity' in the children nodes.
This diversity is often measured by Gini criterion, see
below.



Gini criterion
The subdivision continues until every node at the bottom
has only one class (disease or normal) in it, assigned
as a prediction to input Xx.

Gini Criterion: Define class C; = disease; Cy = normal.
How do we measure variation of samples in a node
with respect to these two classes?

Suppose there are 2 classes (', C; and we have
examples in set S at our current node.

Now to create child nodes, partition S = S; U .95.



Gini criterion
(Note each sample Sy, S, is partitioned into the two
classes C, ()

Recall |S| = # objects in set S

Define
Soan 1S . y
P(S;) = i proportion of S;in S
P(Cy|S)) = 5;NG proportion of S;which is in C;.




Gini criterion
Define the variation g(.S;) in set S; to be:

9(8)) = Y _P(Ci|S)(1 = P(Ci|S))),

1=1

Note: variation ¢(S;) is largest if set .S; is equally divided
among C;. It's smallest when all of S; is just one of
the C;.

We define the variation of this full subdivision of the S; to
be the Gini index = G if:



Gini criterion

G = P(S1)g(S1) + P(52)g(S2)

= weighted sum of variations ¢(.51), ¢g(.S2)



3. Random vectors

A random vector
X=(X1,...,Xy)
Is an array of random variables defined on the same
probability space.

Given X as above define its distribution (or joint
distribution of X1, ..., X;) to be measure p on R?
defined by

u(A) = P(X € A),



for any A € R? which is measurable.



Random vectors
Ex. 2. Consider rolling 2 dice. Let X; be the number on
the first die, X, the number on the second die. Then
the probability space is

S = {all ordered pairs of die rolls} =



Random vectors

(1), 12), .., (1L6) |
2.1), 2.2), ..., (2,6) <

6.1). (6.2), ..., (6.6)

X, =firstroll; Xy = second roll,



Random vectors
l.e., ifwe Sisgiven by w = (3,4), then
Xl(S) = 3; XQ(LU) = 4.
The random vector (X3, X,) satisfies
(X1, X2)(w) = (3,4).



Random vectors
Ex.3: Letx = (z1,...,x4) be a microarray of a glioma
cancer sample in its initial stages. Then each feature
x; IS a random variable with some distribution.

For fixed i, let X; be a model random variable whose
probability distribution is the same as the x; numbers
in the microarray.

Then the model random vector X = (X4, ..., Xy) has a
joint distribution which is the same as our microarray
samples x = (z1, z9,...,xq).



Random vectors
For a microarray X, let y be the classification of the
cancer (y = + 1 means malignant; y = —1 means
benign). Then we have another random vector

(xh 7xd7y> = (Xay)7

with the same distribution as a model vector (X,Y).

If the distribution of the random vector (X, y) is given by
the model random vector (X,Y), we write

(X7 y) ~ (X7 Y)



Random vectors
4. Random forest: formal definition

Assume training set of microarrays
D= {(X17 y1)7 R (Xn7 yn)}

drawn randomly from a (possibly unknown) probability
distribution (x;,y;) ~ (X,Y).

Goal: to build a classifier which predicts y from x based
on the data set of examples D.

Given: ensemble of (possibly weak) classifiers

h = {hl(X), ,hK(X)}



Random forest: formal definition

If each hj;(X) is a decision tree, then the ensemble is a
random forest. We define the parameters of the
decision tree for classifier hj(x) to be

Or = (Ok1,Ok2,-- -, Op)

(these parameters include the structure of tree, which
variables are split in which node, etc.)



Random forest: formal definition
We sometimes write

hk(X) = h(X‘ @k}

Thus decision tree k leads to a classifier
hi(X) = h(X|O).

How do we choose which features appear in which
nodes of the k" tree? At random, according to
parameters O, which are randomly chosen from a
model variable ©.



Random forest: formal definition
Definition 1. A random forest is a classifier based on a
family of classifiers h(x|01), ..., h(X|Ok) based on a
classification tree with parameters ©; randomly
chosen from a model random vector ©.

For the final classification f(x) (which combines the
classifiers {h;(X)}), each tree casts a vote for the
most popular class at input x, and the class with the
most votes wins.

Specifically given data D = {(x;, y;)}I,: we train a
family of classifiers h(x).



Random forest: formal definition
Each classifier hy(X) = h(x|©},) is in our case a predictor
ofn

y = + 1 = outcome associated with input x.



Examples
Example 4: © = parameter of a tree determines a
random subset Dg of the full data vector D, i.e., we
only choose a sub-collection of feature vectors

X = (x1,...,2q)-
So Dg Is a subset of
D ={(X1,11),---, Xn,yn)} = full data set.

Thus parameter ©;, (for classification tree k) determines
which subset of full data set D we choose for the tree
hi(X) = h(X|Oy).



Examples
Then the ensemble of classifiers (now an RF) consists of
trees, each of which sees a different subset of the
data.

Example 3: © determines subset x¢o of the full set of
features X = (z1,...,24). Then

h(x|©y) = classification tree using subset x¢ of
entries of full feature vector x

[dimension reduction]



Examples
In data mining (where dimension d is very high) this
situation is common.



5. General ensemble methods - properties

Given a fixed ensemble
h = (hl(X), cee hK(X))

of classifiers with random data vector (X, y) :
If A is any outcome for a classifier h;(x) in the ensembile,
we define

JAD(A) = proportion of classifiers h; (1 < k < K)
for which event A occurs

= empirical probability of A.



Ensemble methods: definitions

Define empirical margin function by:
m(X,y) = Pr(hi(X) = y) — r?j;(ﬁk(hk(x) =), (1)
= average margin of the ensemble of
classifiers

= extent to which average number of votes for
correct class exceeds the average number
of votes for the next-best class



Ensemble methods: definitions
~ confidence in the classifier.

Definition 2. The generalization error of the classifier
ensemble A is

e = P, (m(x,y) <0).

[subscript x, y indicates prob. measured in X, y space,
l.e., (X,y) is viewed as the random variable].



Ensemble methods: definitions
Theorem 1: As K — oo (i.e., as the number of trees
Increases),

e — Pxy|Po(h(X,0) =y) — mij@(h(x, ©)=j5)<0
o° J7Y

(2)

note P, denotes prob. as x, y varies - similarly for Pg)



Ensemble methods: definitions
Proof: Note

Mw

Pr(hy(X) = 5) = Ey[I(hy(x = IThi(X) = j]
k:

where E), = average over k; hi(X) = h(x|©y).
Recall I(A) = 1 if Aoccurs and 0 otherwise.

Claim for our random sequence 04,0, ..., and V data
vectors X, it suffices to show



Ensemble methods: definitions

% S I[n(x|6k) = j] = Po(h(x|©) = j).  (3)
k=1

Why? Let gx(X,y) = RHS of (1), g(X,y) = quantity in
bracket of (2)

Then note for each x, y if (3) holds we would have
9k (X, y) — g(X, y). (4)

Note also




Ensemble methods: definitions

Py (gr (X, y) <0) = Ex,y[I(gx(X,y) <0)],
so by bounded convergence theoremand (4)
Pry(gr(X,y) <0) = P(g(X,y) <0).

thus proving theorem. Thus we must only prove (3).

To prove (3): for fixed training set x and tree with
parameter O, set of x with ~(x|©) = j is a union of
boxes




Ensemble methods: definitions
B=1L x... XIdZ{X‘JJi EIZ‘}

for fixed collection of intervals {I;}¢ ;.

Assuming a finite number of models © for h(x|©) (e.g.,
finite number of sample subsets, finite number of
feature space subsets).

Then 7 a finite number K of such unions of boxes, call
them {S;}5 | .

Define



Ensemble methods: definitions
$(0) = kif {x:h(x|0) = j} = S
Let
Ny = #times ¢(0,,) = Si.
Then

—Z[ X‘@m —] ZNkI X € Sk)

By the law of large numbers,



Ensemble methods: definitions

1 M
= MZI((M@ ) =
converges with probability 1 to

EolI(¢(©) = k)| = Po(¢(O) = k).
Thus

—Zl[h x|0,,) = j] — ZPO )I(x € S)



Ensemble methods: definitions
= Po(h(©,X) = j),

proving (3) and completing proof.



Ensemble methods: definitions
6. Random forests as ensembles

Instead of fixed ensemble {h;(x)}X , of classifiers,
consider RF model:

We have h(x|©); © specifies classification tree
classifier h(x|©)

We have a fixed (known) probability distribution for ©
determining variety of trees



Random forests as ensembles
Definition 3: The margin function of an RF is:

m(x,y) = Po(h(x|0) = y) — maxPe(h(X|O) = j).
The strength of the forest (or any family of classifiers)
IS

s = Ey ,m(X,y).
The generalization error is (Chebyshev inequality)
V(m)

52

e = Pyy(m(x,y) <0) < Pyy(Im(X,y) — s[> 5) <

giving a (weak) bound.



Random forests as ensembles
Better bounds can be obtained in

Breiman (2001), Random Forests, in Machine Learning.



Random forests as ensembles
7. Some sample applications (Breiman):

Some performance statistics on standard databases:

Forest random input (random feature selection) - single
feature at a time (percentage error rates)



Random forests as ensembles

Data set Adaboost Selection Forest-RI single input One tre
Glass 220 20.6 21.2 36.9
Breast cancer 3.2 29 27 6.3
Diabetes 26.6 24.2 24.3 331
Sonar 15.6 15.9 18.0 31.7
Vowel 4.1 34 33 304
lonosphere 6.4 7.1 7.5 12.7
Vehicle 23.2 25.8 264 33.1
Germman credit 235 244 26.2 333
Image 1.6 2.1 27 6.4
Ecoli 14.8 12.8 13.0 245
Votes 4.8 4.1 4.6 74
Liver 30.7 25.1 24.7 40.6
Letters 34 35 4.7 19.8
Sat-images 8.8 8.6 10,5 17.2
Zip-code 6.2 6.3 78 20.6
Waveform 17.8 17.2 17.3 34.0
Twonorm 49 39 39 24.7
Threenorm 18.8 17.5 17.5 384
Ringnorm 6.9 4.9 4.9 25.7

Breiman, 2001



Random forests as ensembles
Variable importance - determined by accuracy decrease
with noise in variable:

percent increase

=100 T T T T T T T T T T
1 2 <] 4 5 6 7 B 9 10 11 12 13 14 186 16

variables

Breiman, 2001



