Mathematics of Random Forests

1. Probability: Chebyshev inequality

Theorem 1 (Chebyshev inequality): If X is a random variable with standard deviation σ and mean μ , then for any $\epsilon > 0$,

$$
P(|X - \mu| > \epsilon) \le \frac{\sigma^2}{\epsilon^2}.
$$

Probability background Theorem 2 (Bounded convergence theorem): Given a sequence $h_1(\mathbf{x}), h_2(\mathbf{x}), \ldots$ of fns. with $h_k(\mathbf{x}) \leq M$ for fixed $M > 0$) defined on a space S of finite measure. then

$$
\lim_{k\to\infty}\!\int_S\!d{\mathbf x}\;h_k({\mathbf x})\underset{k\to\infty}{\to}\int_S\!d{\mathbf x}\;\;\lim_{k\to\infty}\!h_k({\mathbf x}),
$$

i.e., the limit and integration can be interchanged (assuming the limits exist).

Probability background

Recall:

Def. 1 (Indicator function): For any event $A \subset \Omega$ of the sample space, define the *indicator function* (also known as *characteristic function*) of A to be

$$
I_A(x) = \begin{cases} 1 & \text{if } x \in A \\ 0 & \text{otherwise} \end{cases} = \begin{cases} 1 & \text{if } A \text{ occurs} \\ 0 & \text{otherwise} \end{cases}
$$

2. Classification trees

Assume we have n patients (samples), and (e.g., mass spectroscopy) feature vectors $\{x_i\}_{i=1}^n$ with outcomes y_i .

Data:

$$
D = \{(\mathbf{x}_1, y_1), \ldots, (\mathbf{x}_n, y_n)\}.
$$

Each feature vector

$$
\mathbf{X}_k = (x_{k1}, \ldots, x_{kd}).
$$

Classification trees

Formal definitions:

Definition 2: A *classification tree* is a decision tree in which each node has a *binary* decision based on whether $x_i < a$ or not for a fixed a (can depend on node).

Classification trees

Classification trees

The top node contains all of the examples (\mathbf{x}_k, y_k) , and the set of examples is subdivided among the children of each node according to the classification at that node.

- The subdivision of examples continues until every node at the bottom has examples which are in one class only.
- At each node, feature x_i and threshold a are chosen to minimize resulting 'diversity' in the children nodes. This diversity is often measured by *Gini criterion*, see below.

Gini criterion

The subdivision continues until every node at the bottom has only one class (disease or normal) in it, assigned as a prediction to input **x**.

Gini Criterion: Define class C_1 = disease; C_2 = normal. How do we measure variation of samples in a node with respect to these two classes?

Suppose there are 2 classes C_1 , C_2 and we have examples in set S at our current node.

Now to create child nodes, partition $S = S_1 \cup S_2$.

Gini criterion (Note each sample S_1, S_2 is partitioned into the two classes C_1, C_2)

Recall $|S| = \#$ objects in set S

Define

$$
\widehat{P}(S_j) = \frac{|S_j|}{|S|} = \text{proportion of } S_j \text{ in } S
$$
\n
$$
\widehat{P}(C_i|S_j) = \frac{|S_j \cap C_i|}{|S_j|} = \text{proportion of } S_j \text{ which is in } C_i.
$$

Gini criterion Define the *variation* $g(S_i)$ in set S_i to be:

$$
g(S_j) = \sum_{i=1}^{2} \widehat{P}(C_i|S_j)(1 - \widehat{P}(C_i|S_j)),
$$

- Note: variation $g(S_i)$ is largest if set S_i is equally divided among C_i . It's smallest when all of S_i is just one of the C_i .
- We define the variation of this full subdivision of the S_i to be the *Gini index* = G if:

Gini criterion $G = \hat{P}(S_1)g(S_1) + \hat{P}(S_2)g(S_2)$

= weighted sum of variations $g(S_1)$, $g(S_2)$

3. Random vectors

A random vector

$$
\mathbf{X} = (X_1, \dots, X_d)
$$

is an array of random variables defined on the same probability space.

Given **X** as above define its distribution (or joint *distribution* of X_1, \ldots, X_d to be measure μ on \mathbb{R}^d defined by

$$
\mu(A) \equiv P(\mathbf{X} \in A),
$$

for any $A \in \mathbb{R}^d$ which is measurable.

Random vectors

Ex. 2: Consider rolling 2 dice. Let X_1 be the number on the first die, X_2 the number on the second die. Then the probability space is

 $S = \{$ all ordered pairs of die rolls $\} =$

Random vectors

$$
(1,1), (1,2), ..., (1,6)
$$

\n
$$
(2,1), (2,2), ..., (2,6)
$$

\n...\n
$$
(6,1), (6,2), ..., (6,6)
$$

 X_1 = first roll; X_2 = second roll,

Random vectors i.e., if $\omega \in S$ is given by $\omega = (3, 4)$, then

$$
X_1(s) = 3;
$$
 $X_2(\omega) = 4.$

The random vector (X_1, X_2) satisfies

$$
(X_1, X_2)(\omega) = (3, 4).
$$

Random vectors

Ex. 3: Let $\mathbf{x} = (x_1, \dots, x_d)$ be a microarray of a glioma cancer sample in its initial stages. Then each feature x_i is a random variable with some distribution.

For fixed i, let X_i be a model random variable whose probability distribution is the same as the x_i numbers in the microarray.

Then the model random vector $\mathbf{X} = (X_1, \dots, X_d)$ has a joint distribution which is the same as our microarray samples $\mathbf{x} = (x_1, x_2, \dots, x_d)$.

Random vectors

For a microarray **x**, let y be the classification of the cancer ($y = +1$ means malignant; $y = -1$ means benign). Then we have another random vector

$$
(x_1,\ldots,x_d,y)=(\mathbf{x},y),
$$

with the same distribution as a model vector (\mathbf{X}, Y) .

If the distribution of the random vector (\mathbf{x}, y) is given by the model random vector (X, Y) , we write

$$
(\mathbf{x},y)\sim (\mathbf{X},Y).
$$

Random vectors 4. Random forest: formal definition

Assume training set of microarrays

$$
D = \{(\mathbf{x}_1, y_1), \ldots, (\mathbf{x}_n, y_n)\}
$$

drawn randomly from a (possibly unknown) probability distribution $(\mathbf{x}_i, y_i) \sim (\mathbf{X}, Y)$.

Goal: to build a classifier which predicts y from **x** based on the data set of examples D .

Given: ensemble of (possibly weak) classifiers $h = \{h_1(\mathbf{x}), \dots, h_K(\mathbf{x})\}.$

Random forest: formal definition

If each $h_k(\mathbf{x})$ is a decision tree, then the ensemble is a random forest. We define the parameters of the decision tree for classifier $h_k(\mathbf{x})$ to be $\Theta_k = (\theta_{k1}, \theta_{k2}, \dots, \theta_{kn})$

(these parameters include the structure of tree, which variables are split in which node, etc.)

Random forest: formal definition We sometimes write

$$
h_k(\mathbf{x}) = h(\mathbf{x} | \Theta_k).
$$

Thus decision tree k leads to a classifier $h_k(\mathbf{X}) = h(\mathbf{X} | \Theta_k).$

How do we choose which features appear in which nodes of the k^{th} tree? At random, according to parameters Θ_k , which are randomly chosen from a model variable Θ

Random forest: formal definition **Definition 1.** A random forest is a classifier based on a family of classifiers $h(\mathbf{x}|\Theta_1), \ldots, h(\mathbf{x}|\Theta_K)$ based on a classification tree with parameters Θ_k randomly chosen from a model random vector Θ .

For the final classification $f(\mathbf{x})$ (which combines the classifiers $\{h_k(\mathbf{x})\}\)$, each tree casts a vote for the most popular class at input **x**, and the class with the most votes wins.

Specifically given data $D = \{(\mathbf{x}_i, y_i)\}_{i=1}^n$: we train a family of classifiers $h_k(\mathbf{x})$.

Random forest: formal definition Each classifier $h_k(\mathbf{x}) \equiv h(\mathbf{x}|\Theta_k)$ is in our case a predictor of n

 $y = \pm 1$ = outcome associated with input **x**.

Examples

Example 4: Θ = parameter of a tree determines a random subset D_{Θ} of the full data vector D, i.e., we only choose a sub-collection of feature vectors ${\bf X}=(x_1,\ldots,x_d).$

So D_{Θ} is a subset of

$$
D = \{(\mathbf{x}_1, y_1), \ldots, (\mathbf{x}_n, y_n)\} = \text{full data set}.
$$

Thus parameter Θ_k (for classification tree k) determines which subset of full data set D we choose for the tree $h_k(\mathbf{X}) = h(\mathbf{X}|\Theta_k).$

Examples

Then the ensemble of classifiers (now an RF) consists of trees, each of which sees a different subset of the data.

Example 3: Θ determines subset x_{Θ} of the full set of features $\mathbf{x} = (x_1, \dots, x_d)$. Then

 $h(\mathbf{x}|\Theta_k)$ = classification tree using subset \mathbf{x}_{Θ} of entries of full feature vector x

[dimension reduction]

Examples

In data mining (where dimension d is very high) this situation is common.

5. General ensemble methods - properties

Given a fixed ensemble

$$
h=(h_1(\mathbf{x}),\ldots,h_K(\mathbf{x}))
$$

of classifiers with random data vector (\mathbf{x}, y) :

If A is any outcome for a classifier $h_k(\mathbf{x})$ in the ensemble, we define

> $\widehat{P}(A)$ = proportion of classifiers h_k $(1 \leq k \leq K)$ for which event A occurs

> > $=$ empirical probability of A.

Ensemble methods: definitions

Define empirical *margin function* by:

$$
\widehat{m}(\mathbf{x}, y) \equiv \widehat{P}_k(h_k(\mathbf{x}) = y) - \max_{j \neq y} \widehat{P}_k(h_k(\mathbf{x}) = j), \quad (1)
$$

= average margin of the ensemble of classifiers

> $=$ extent to which average number of votes for correct class exceeds the average number of votes for the next-best class

Ensemble methods: definitions \approx confidence in the classifier.

Definition 2: The *generalization error* of the classifier ensemble h is

$$
e = P_{\mathbf{x},y}(\widehat{m}(\mathbf{x},y) < 0).
$$

[subscript \mathbf{x}, y indicates prob. measured in \mathbf{x}, y space, i.e., (x, y) is viewed as the random variable].

Ensemble methods: definitions Theorem 1: As $K \to \infty$ (i.e., as the number of trees *increases*),

$$
e \underset{K \to \infty}{\longrightarrow} P_{\mathbf{x},y} \bigg[P_{\Theta}(h(\mathbf{x}, \Theta) = y) - \max_{j \neq y} P_{\Theta}(h(\mathbf{x}, \Theta) = j) < 0 \bigg] \tag{2}
$$

note $P_{\mathbf{x},y}$ denotes prob. as \mathbf{x},y varies - similarly for P_{Θ})

Ensemble methods: definitions Proof: Note

$$
\widehat{P}_k(h_k(\mathbf{x}) = j) = E_k[I(h_k(\mathbf{x}) = j)] \equiv \frac{1}{K} \sum_{k=1}^K I[h_k(\mathbf{x}) = j]
$$

where E_k = average over k; $h_k(\mathbf{x}) \equiv h(\mathbf{x}|\Theta_k)$.

- -

Recall $I(A) = 1$ if A occurs and 0 otherwise.

Claim for our random sequence $\Theta_1, \Theta_2, \ldots$, and \forall data vectors **x**, it suffices to show

Ensemble methods: definitions

$$
\frac{1}{K}\sum_{k=1}^{K}I[h(\mathbf{x}|\Theta_k)=j]\rightarrow P_{\Theta}(h(\mathbf{x}|\Theta)=j).
$$
 (3)

Why? Let $g_K(\mathbf{x}, y) \equiv$ RHS of (1), $g(\mathbf{x}, y) =$ quantity in bracket of (2)

Then note for each x, y if (3) holds we would have $g_K(\mathbf{x}, y) \rightarrow g(\mathbf{x}, y)$.

Note also

 $P_{\mathbf{x},y}(g_K(\mathbf{x},y) < 0) = E_{\mathbf{x},y}[I(g_K(\mathbf{x},y) < 0)],$

so by bounded convergence theorem and (4) $P_{\mathbf{x},y}(g_K(\mathbf{x},y) < 0) \underset{K \to \infty}{\longrightarrow} P(g(\mathbf{x},y) < 0).$

thus proving theorem. Thus we must only prove (3).

To prove (3): for fixed training set **x** and tree with parameter Θ , set of **x** with $h(\mathbf{x}|\Theta) = j$ is a union of boxes

Ensemble methods: definitions $B \equiv I_1 \times \ldots \times I_d = \{ \mathbf{X} | x_i \in I_i \}$

for fixed collection of intervals $\{I_i\}_{i=1}^d$.

Assuming a finite number of models Θ for $h(\mathbf{x}|\Theta)$ (e.g., finite number of sample subsets, finite number of feature space subsets).

Then \exists a finite number K of such unions of boxes, call them $\{S_k\}_{k=1}^K$.

Define

Ensemble methods: definitions $\phi(\Theta) = k$ if $\{\mathbf{x} : h(\mathbf{x}|\Theta) = j\} = S_k$

Let

$$
N_k = \text{\# times } \phi(\Theta_m) = S_k.
$$

Then

$$
\frac{1}{M}\sum_{m=1}^{M}I(h(\mathbf{x}|\Theta_m)=j)=\frac{1}{M}\sum_{k}N_kI(\mathbf{x}\in S_k).
$$

By the law of large numbers,

Ensemble methods: definitions

$$
N_k = \frac{1}{M} \sum_{m=1}^{M} I(\phi(\Theta_m) = k)
$$

converges with probability 1 to

$$
E_{\Theta}[I(\phi(\Theta) = k)] = P_{\Theta}(\phi(\Theta) = k).
$$

Thus

$$
\frac{1}{M} \sum_{m=1}^{M} I[h(\mathbf{x}|\Theta_m) = j] \rightarrow \sum_{k} P_{\Theta}(\phi(\Theta) = k) I(\mathbf{x} \in S_k)
$$

Ensemble methods: definitions $= P_{\Theta}(h(\Theta, \mathbf{x}) = j),$

proving (3) and completing proof.

Ensemble methods: definitions 6. Random forests as ensembles

Instead of fixed ensemble $\{h_k(\mathbf{x})\}_{k=1}^K$ of classifiers, consider RF model:

We have $h(\mathbf{x}|\Theta)$; Θ specifies classification tree classifier $h(\mathbf{x}|\Theta)$

We have a fixed (known) probability distribution for Θ determining variety of trees

Random forests as ensembles **Definition 3:** The *margin function* of an RF is:

$$
m(\mathbf{x}, y) = P_{\Theta}(h(\mathbf{x}|\Theta) = y) - \max_{j \neq Y} P_{\Theta}(h(\mathbf{x}|\Theta) = j).
$$

The *strength* of the forest (or any family of classifiers) is

$$
s=E_{{\bf X},y}m({\bf X},y).
$$

The *generalization error* is (Chebyshev inequality)

$$
e=P_{\mathbf{X},y}(m(\mathbf{X},y)<0)\leq P_{\mathbf{X},y}(|m(\mathbf{X},y)-s|\geq s)\leq \frac{V(m)}{s^2},
$$

giving a (weak) bound.

Random forests as ensembles

Better bounds can be obtained in

Breiman (2001), Random Forests, in *Machine Learning.*

Random forests as ensembles **7. Some sample applications (Breiman):**

Some performance statistics on standard databases:

Forest random input (random feature selection) - single feature at a time (percentage error rates)

Random forests as ensembles

reiman, 2001

Random forests as ensembles Variable importance - determined by accuracy decrease with noise in variable:

Breiman, 2001