
Mathematics of Random Forests

1 Probability:  Chebyshev inequalityÞ

Theorem 1 (Chebyshev inequality):  If  is a random\
variable with standard deviation  and mean , then5 .
for any ,%  !

TÐl\  l  Ñ Ÿ Þ. %
5
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#

#



Probability background
Theorem 2 (Bounded convergence theorem):  Given a

sequence of fns. with h  for2 Ð Ð Ñ Ÿ Q" 5x x xÑß 2 Ð Ñßá#

fixed ) defined on a space  of finite measure,Q  ! W
then

lim
5Ä_ W W

5 5
5Ä_

( (. 2 Ð Ñ Ä . 2 Ð Ñßx x x xlim
5Ä_

i.e., the limit and integration can be interchanged
(assuming the limits exist).



Probability background
Recall:

Def. 1 (Indicator function):  For any event  of theE § H
sample space, define the (alsoindicator function 
known as ) of  to becharacteristic function E

M ÐBÑ œ œ
" B − E " E
!E œ œif if  occurs

otherwise 0 otherwise .



2 Classification treesÞ

Assume we have  patients (samples), and (e.g., mass8
spectroscopy) feature vectors  with outcomesÖ ×x3 3œ"

8

C3.

Data:

H œ ÖÐ ß C Ñßá ß Ð ß C Ñ×Þx x" " 8 8

Each feature vector

x5 5" 5.œ ÐB ßá ß B ÑÞ



Classification trees
Formal definitions:

Definition 2:  A is a decision tree inclassification tree 
which each node has a  decision based onbinary
whether  or not for a fixed  (can depend onB  + +3

node).



Classification trees



Classification trees
The top node contains all of the examples , andÐ ß C Ñx5 5

the set of examples is subdivided among the children
of each node according to the classification at that
node.

The subdivision of examples continues until every node
at the bottom has examples which are in one class
only.

At each node, feature  and threshold  are chosen toB +3

minimize resulting 'diversity' in the children nodes.
This diversity is often measured by , seeGini criterion
below.



Gini criterion
The subdivision continues until every node at the bottom

has only one class (disease or normal) in it, assigned
as a prediction to input .x

Gini Criterion:  Define class disease normal.G œ à G œ" #

How do we measure variation of samples in a node
with respect to these two classes?

Suppose there are 2 classes  and we haveG ß G" #

examples in set  at our current node.W

Now to create child nodes, partition .W œ W  W" #



Gini criterion
(Note each sample  is partitioned into the twoW ß W" #

classes )G ßG" #

Recall # objects in set lWl œ W

Define

TÐW Ñ œ œ W Ws lW l

lWl
4 4

4 proportion of  in 

TÐG lW Ñ œ œ W G Þs lW  G l

lW l
3 4 4 3

4 3

4
proportion of which is in 



Gini criterion
Define the  in set  to be:variation 1ÐW Ñ4 W4

1ÐW Ñ œ TÐG lW ÑÐ"  TÐG lW ÑÑßs s4 3 4 3 4

3œ"

#"

Note: variation is largest if set  is equally divided1ÐW Ñ4  W4

among .  It's smallest when all of  is just  ofG W3 4 one
the G Þ3

We define the variation of this full subdivision of the  toW4

be the if:Gini index  œ K



Gini criterion

K œ TÐW Ñ1ÐW Ñ  TÐW Ñ1ÐW Ñs s" " # #

œ weighted sum of variations 1ÐW Ñß 1ÐW Ñ" #



3. Random vectors 

A random vector

X œ Ð\ ßá ß\ Ñ" .

is an array of random variables defined on the same
probability spaceÞ

Given as above define its distribution (or X  joint
distribution  of to be measure  on \ ßá ß\ Ñ" . . ‘.

defined by

.(  EÑ ´ TÐ − EÑßX



for any  which is measurable.E − ‘.



Random vectors
Ex. 2:  Consider rolling 2 dice.  Let  be the number on\"

the first die  the number on the second die.  Thenß \#

the probability space is

W œ Ö × œall ordered pairs of die rolls



Random vectors

\ œ à \ œ" #first roll second roll,



Random vectors
i.e., if  is given by , then= =− W œ Ð$ß %Ñ

\ Ð=Ñ œ $ \ Ð Ñ œ %Þ" #;         =

The random vector  satisfiesÐ\ ß\ Ñ" #

Ð\ ß\ ÑÐ Ñ œ Ð$ß %ÑÞ" # =



Random vectors
Ex. 3:  Let  be a microarray of a gliomax œ ÐB ßá ß B Ñ" .

cancer sample in its initial stages.  Then each feature
B3 is a random variable with some distribution.

For fixed , let  be a model random variable whose3 \3

probability distribution is the same as the  numbersB3

in the microarray.

Then the model random vector  has aX œ Ð\ ßá ß\ Ñ" .

joint distribution which is the same as our microarray
samples x œ ÐB ß B ßá ß B ÑÞ" # .



Random vectors
For a microarray , let  be the classification of thex C

cancer (  means malignant;   meansC œ  " C œ "
benign).  Then we have another random vector

ÐB ßá ß B ß CÑ œ Ð ß CÑß" . x

with the same distribution as a model vector .Ð ß ] ÑX

If the distribution of the random vector  is given byÐ ß CÑx
the model random vector , we writeÐ ß ] ÑX

Ð ß CÑ µ Ð ß ] ÑÞx X



Random vectors
4.  Random forest: formal definition

Assume training set of microarrays

H œ ÖÐ ß C Ñßá ß Ð ß C Ñ×x x" " 8 8

drawn randomly from a (possibly unknown) probability
distribution .Ð ß C Ñ µ Ð ß ] Ñx X3 3

Goal: to build a classifier which predicts  from basedC x 
on the data set of examples .H

Given:  ensemble of (possibly weak) classifiers
2 œ Ö2 Ð Ñß á ß 2 Ð Ñ×" Ox x .



Random forest: formal definition

If each  is a decision tree, then the ensemble is a2 Ð Ñ5 x
random forest.  We define the parameters of the
decision tree for classifier  to be2 Ð Ñ5 x
@ ) ) )5 5" 5# 5:œ Ð ß ßá ß Ñ

(these parameters include the structure of tree, which
variables are split in which node, etc.)



Random forest: formal definition
We sometimes write

2 Ð Ñ œ 2Ð l ×Þ5 5x x @

Thus decision tree  leads to a classifier5
2 Ð Ñ œ 2Ð l ÑÞ5 5x x @

How do we choose which features appear in which
nodes of the  tree?  At random, according to5>2

parameters , which are randomly chosen from a@5

model variable @Þ



Random forest: formal definition
Definition 1.  A  is a classifier based on arandom forest

family of classifiers  based on a2Ð l Ñßá ß 2Ð l Ñx x@ @" O

classification tree with parameters  randomly@5

chosen from a model random vector .@

For the final classification  (which combines the0Ð Ñx
classifiers ), each tree casts a vote for theÖ2 Ð Ñ×5 x
most popular class at input , and the class with thex
most votes wins.

Specifically given data :  we train aH œ ÖÐ ß C Ñ×x3 3 3œ"
8

family of classifiers .2 Ð Ñ5 x



Random forest: formal definition
Each classifier  is in our case a predictor2 Ð Ñ ´ 2Ð l Ñ5 5x x @

of 8

C œ „ " œ Þoutcome associated with input x



Examples
Example 4:   parameter of a tree determines a@ œ

random subset  of the full data vector , i.e., weH H@

only choose a sub-collection of feature vectors
x œ ÐB ßá ß B ÑÞ" .

So  is a subset ofH@

H œ ß C ßá ß C œe fa b a bx x" " 8 8ß full data set. 

Thus parameter  (for classification tree ) determines@5 5
which subset of  full data set  we choose for the treeH
2 Ñ œ 2Ð l ÑÞ5 5(x x @



Examples
Then the ensemble of classifiers (now an RF) consists of

trees, each of which sees a different subset of the
data.

Example 3:  @ determines subset  of the full set ofx@
features  Thenx œ ÐB ßá ß B ÑÞ" .

 classification tree using subset  of2Ð l Ñ œx x@5 @

   entries of full feature vector   x

 [dimension reduction]



Examples
In data mining (where dimension  is very high) this.

situation is common.



5.  General ensemble methods - properties

Given a ensemblefixed 

2 œ Ð2 Ð Ñßá ß 2 Ð ÑÑ" Ox x  

of classifiers with random data vector Ð ß CÑ Àx

If  is any outcome for a classifier  in the ensemble,E 2 Ð Ñ5 x
we define

  proportion of classifiers  TÐEÑ œ 2 Ð" Ÿ 5 Ÿ OÑs 5

    for which event  occursE

   of .œ Eempirical probability 



Ensemble methods: definitions

Define by:empirical margin function 

 7Ð ß CÑ ´ T Ð2 Ð Ñ œ CÑ  T Ð2 Ð Ñ œ 4Ñß Ð"Ñs s sx x x5 5 5 5
4ÁC
max

 
    of the ensemble ofœ average margin 

classifiers

  extent to which average number of votes forœ
   correct class exceeds the average number
   of votes for the next-best class



Ensemble methods: definitions
  confidence in the classifier.¸

Definition 2:  The of the classifiergeneralization error 
ensemble  is2

/ œ T Ð7Ð ß CÑ  !ÑÞsxßC x

[subscript  indicates prob. measured in  space,x xß C ß C
i.e., (  is viewed as the random variable].xß CÑ



Ensemble methods: definitions
Theorem 1:  As  (i.e., as the number of treesO Ä _

increases),

/ T T 2Ð ß Ñ œ C  T Ð2Ð ß Ñ œ 4Ñ  !Ò @ @
O Ä _ x,C” •a b@ @x xmax

4ÁC

        Ð#Ñ

note  denotes prob. as  varies - similarly for T ß C T ÑxßC x @



Ensemble methods: definitions
Proof:  Note

T Ð2 Ð Ñ œ 4Ñ œ I MÐ2 Ð Ñ œ 4Ñ ´ M 2 Ð Ñ œ 4s "

O
5 5 5 5 5

5œ"

O

x x xc d c d"  

where  average over I œ 5à 2 Ð Ñ ´ 2Ð l ÑÞ5 5 5x x @

 Recall  if occurs and 0 otherwise.MÐEÑ œ " E

Claim for our random sequence , and  data@ @" #ß ßá a
vectors , it suffices to showx



Ensemble methods: definitions

"

O
M 2Ð l Ñ œ 4 Ä T Ð2Ð l Ñ œ 4ÑÞ (3)" c d

5œ"

O

5x x@ @@

Why?  Let RHS of (1) quantity in1 Ð ß CÑ ´ ß 1Ð ß CÑ œO x x
bracket of (2)

 Then note for each  if (3) holds we would havexß C

1 Ð ß CÑ Ä 1Ð ß CÑ Ð ÑO x x .  4

Note also



Ensemble methods: definitions

T Ð1 Ð ß CÑ  !Ñ œ I MÐ1 Ð ß CÑ  !Ñ ßx xßC O ßC Ox xc d
so by bounded convergence theorem and (4)

T Ð1 Ð ß CÑ  !Ñ T Ð1Ð ß CÑ  !xßC O x xÒ
O Ä _

).

thus proving theorem.  Thus we must only prove (3).

To prove (3):  for fixed training set  and tree withx
parameter , set of  with  is a union of@ @x x2Ð l Ñ œ 4
boxes



Ensemble methods: definitions

F ´ M ‚á ‚ M œ Ö lB − M ×" . 3 3x

for fixed collection of intervals ÖM × Þ3 3œ"
.

Assuming a finite number of models  for  (e.g.,@ @2Ð l Ñx
finite number of sample subsets, finite number of
feature space subsets).

Then  a finite number  of such unions of boxes callb O ß
them   ÖW × Þ5

O
5œ"

Define



Ensemble methods: definitions

9 @ @Ð Ñ œ 5 Ö À 2Ð l Ñ œ 4× œ W if  x x 5

Let

R œ Ð Ñ œ W Þ5 7 5# times 9 @

Then

" "

Q Q
MÐ2Ð l Ñ œ 4Ñ œ R MÐ − W ÑÞ" "

7œ"

Q

7 5 5

5

x x@

By the law of large numbers,



Ensemble methods: definitions

R œ MÐ Ð Ñ œ 5Ñ
"

Q
5 7

7œ"

Q" 9 @

converges with probability  to"

I MÐ Ð Ñ œ 5Ñ œ T Ð Ð Ñ œ 5Ñ@ @c d9 @ 9 @ .  

Thus

"

Q
M 2Ð l Ñ œ 4 Ä T Ð Ð Ñ œ 5ÑMÐ − W Ñ" "c d

7œ"

Q

7 5

5

x x@ 9 @@



Ensemble methods: definitions

œ T Ð2Ð ß Ñ œ 4Ñß@ @ x

proving (3) and completing proof.



Ensemble methods: definitions
6.  Random forests as ensembles

Instead of fixed ensemble  of classifiers,Ö2 Ð Ñ×5 5œ"
Ox

consider RF model:

 We have ;  specifies classification tree2Ð l Ñx @ @
  classifier 2Ð l Ñx @

We have a fixed (known) probability distribution for @
determining variety of trees



Random forests as ensembles
Definition 3:   The of an RF is:margin function 

7Ð ß CÑ œ T Ð2Ð l Ñ œ CÑ  T Ð2Ð l Ñ œ 4ÑÞx x x@ @@ @max
4Á]

The of the forest (or any family of classifiers)strength 
is

= œ I 7Ð ß CÑÞxßC x

The is Chebyshev inequality)generalization error Ð

/ œ T Ð7Ð ß CÑ  !Ñ Ÿ T Ðl7Ð ß CÑ  =l   =Ñ Ÿ
Z Ð7Ñ

=
x xßC ßC #

x x ,

giving a (weak) bound.



Random forests as ensembles

Better bounds can be obtained in

Breiman (2001), Random Forests, in Machine Learning.



Random forests as ensembles
7.  Some sample applications (Breiman):

Some performance statistics on standard databases:

Forest random input (random feature selection) - single
feature at a time (percentage error rates)



Random forests as ensembles

  Breiman, 2001



Random forests as ensembles
Variable importance - determined by accuracy decrease

with noise in variable:

 
  Breiman, 2001


