

Probability and Measure Theory

1. Basics of probability

2 aspects of probability:

Probability = mathematical analysis

Probability = common sense

Probability basics **A set-up of the common sense view**:

Define as *experiment* any event with an *outcome*.

Example 1: Toss of a die

Example 2: Record information on deaths of cancer patients.

Example 3: Measure daily high body temperature of a person on chemotherapy

Example 4: Observe the next letter in a chain of DNA:

$\mathsf{ATCTTCA} \to \texttt{?}$

Given a well-defined experiment we must know the set of all possible outcomes (this must be defined by the experimenter)

Collection of possible outcomes is denoted as

$$S = \text{sample space.}$$

(sometimes also called a *probability space* and written Ω)

Probability basics This is the collection of *all possible outcomes* of the experiment

Example 5: Die toss: $S = \{1, 2, 3, 4, 5, 6\}$

Example 6: Cancer outcome records:

4 outcomes: NL, RL, ND, RD

R = received treatment; N = no treatment; L = lived; D = died

Example 7: High temperature measurement

 $S = \{t : t \text{ a real number}\}$

Many other outcome (sample) spaces S are possible, for example, profiles of functions of DNA regions

So: Have practical situations and for each one we define the sample space S of possible outcomes

Def. 1: For sets A, B: Define $A \subset B$ if A is a subcollection of B.

If $E \subset S$, E is an event

Example 8: Die tossing experiment: if $E = \text{even roll} = \{2, 4, 6\} \subset \{1, 2, 3, 4, 5, 6\}$

then E is an event.

Why an *event*?

Intuitively, an event means something that has occurred, and above the event $A = \{2, 4, 6\}$ represents the *occurrence* of an even number

Again can translate between mathematical definition (subset) and intuitive notions of meanings of words (event).

Probabilist wants to assign a probability P(E) (a number between 0 and 1) to every event E.

Thus, e.g., if $E = \{\text{event of an even roll}\} = \{2, 4, 6\}$ want $P(A) = \frac{1}{2}$ [Rationales can vary]

So: Ideally, want to assign numbers (probabilities) to subsets $E \subset S$.

Example 9: Die toss revisited:

$$P(1) = \frac{1}{6}$$
$$P(2) = \frac{1}{6}$$
$$P(3) = \frac{1}{6}$$
$$P(6) = \frac{1}{6}$$

Probability basics S 6 1 6 I. etc.

Each component in *S* has probability $\frac{1}{6}$.

Any subset $A \subset S$ has probability determined by adding measures of component subsets A_i .

Want
$$P(S) = 1$$

(why ?)

Example 10: If we want to predict next base in genomic sequence, we have the sample space

$$S = \{A, T, C, G\}$$

Define

E = event that next base is a purine, i.e.,

$$E = \{A, G\} \subset S.$$

If we expect all bases have equal probabilities, then $P(E) = 1/2. \label{eq:probabilities}$

- 2. Sample space and probability measure: what properties do we want?
- **Def. 2:** Recall for sets A, B, define $A \cup B$ and $A \cap B$ as the *union* and *intersection* of the sets.

Analytic probability Desired properties of *P*:

(1) If A_i are disjoint (i.e., no pair of them intersects) then the probability of the union of the A_i is the sum of their probabilities:

$$P\left(\bigcup_{i=1}^{\infty} A_i\right) = \sum_{i=1}^{\infty} P(A_i)$$
 (Linearity)

If $\phi = \text{empty set:}$

(2) $P(\phi) = 0, P(S) = 1.$

An assignment of numbers P(E) to subsets (events) $E \subset S$ satisfying properties (1) and (2) is called a *measure* on the set S.

However, we will sometimes need to restrict the collection of sets E to which we can assign a probability (measure) P(E).

⇒ need a collection \mathcal{F} of subsets of S whose probabilities we are allowed to measure.

This collection of subsets \mathcal{F} must have some specific properties:

Def. 3: The notation $E \in \mathcal{F}$ means that the object E is in the collection \mathcal{F}

Def: 4 a collection \mathcal{F} of subsets of S is a σ -field if

(i)
$$S, \phi \in \mathcal{F}$$
 (S and ϕ are in collection \mathcal{F})

(ii)
$$A \Rightarrow A^c \in \mathcal{F}$$
 ($A^c = complement of A$)

(iii)
$$A_i \in \mathcal{F} \ \forall i \Rightarrow \bigcup_i A_i \in \mathcal{F}$$

 $[\forall = \text{for all }]$

where A_1, A_2, A_3, \ldots form a sequence of sets.

Once we have an S, \mathcal{F} , and a P as above, we call the triple

 $(S, \mathcal{F}, P) =$ probability space

We denote the class \mathcal{F} to be the *measureable sets* in S.

Example 11: $S = \{1, 2, 3, 4, 5, 6\}$. In this case the collection \mathcal{F} of measureable sets is usually *all* subsets of *S*, i.e., $\mathcal{F} = \{$ all subsets of *S* $\}$

Example 12: S = [0, 1], i.e., we are choosing a random number x in the interval [0, 1]; S is the set of all possible outcomes.

Here

$\mathcal{F} =$ collection of measureable sets

is defined to be the smallest σ -field of sets including all possible open subsets of [0, 1].

Sometimes this collection \mathcal{F} is denoted as the *Borel sets*.

We can define probabilities of sets to be, e.g.

$$P(a,b) = b - a$$

This defines the probability that our random number x is in the interval (a, b).

It can be shown that we can uniquely extend this definition of probability from the collection of intervals (a, b) to the larger collection of sets \mathcal{F} .

This full measure on the interval [0,1] is called *Lebesgue* measure on [0,1].

We can do the same thing on the entire real line \mathbb{R} to define Lebesgue measure on \mathbb{R} .

On \mathbb{R}^p we can do the same thing by defining Borel sets \mathcal{B}_p to be the smallest σ -field of sets in \mathbb{R}^p containing all open subsets. Then if we define the volume of a box

$$A = \{(x_1, \dots, x_p) : x_1 \in (a_1, b_1), \dots, x_p \in (a_p, b_p)\}$$

in the obvious way (i.e. as the volume

$$V(A) = (b_1 - a_1) \cdot (b_2 - a_2) \dots (b_p - a_p))$$

then we can show there is a unique measure μ defined on the sets in \mathcal{B}_p such that for any box A, the measure $\mu(A)$ is the same as its volume V(A). This measure μ is called *Lebesgue measure* on \mathbb{R}^p .

Measurable functions

3. Some basic notions: measurable functions

If we have a sample space S we want to define functions on it.

Definition 5: We define \mathbb{R} to be the collection of all real numbers.

Definition 6: A function f on any set E is rule which assigns to each element $x \in E$ a real number denoted as f(x).

In this case we write

 $f:E\to\mathbb{R}$

Measurable functions

Assume now we have a collection of measurable sets ${\mathcal F}$ on Ω

Definition 7: A function $f : S \to \mathbb{R}$ is *measurable* if for all $x \in \mathbb{R}$, the set

 $\{a: f(a) \le x\}$ = the set of all a such that $f(a) \le x$ is measurable (i.e. is in \mathcal{F}).

Example 13: Consider the function $f : \mathbb{R} \to \mathbb{R}$ such that $f(x) = x^3$

Measurable functions

Example 14: Consider $f(x) = I_Q(x) =$ indicator function of rationals, defined by

$$f(x) = \begin{cases} 1 & \text{if } x \text{ is rational} \\ 0 & \text{if } x \text{ is irrational} \end{cases}$$

4. Random Variables

Definition 8: A *random variable X* is any measurable function from the sample space *S* to the real numbers.

Example 15: throw 2 dice

Suppose random variable X maps outcomes to numbers.

Thus if the outcome is (3,5) (i.e. first die is a 3 and second die is a 5) then

$$X(3,5) = 8$$
,

i.e., X maps each outcome to the total.

Example 16: For a given amino acid a in a protein sequence, let X(a) denote the number of other amino acids which a is bound to.

Again X maps the amino acid (in S) into a number.

For a random variable (RV) X:

Def. 9: If X is a random variable, we define its *distribution function* F to be

$$F(x)$$
 : $P(\omega: X(\omega) \leq x) = P(X \leq x)$

Random variables Properties of F (easily derived)

(i)
$$F(x) \to 1$$
 as $x \to \infty$
 $F(x) \to 0$ as $x \to -\infty$

(ii) *F* has at most countably many discontinuities i.e., discontinuity points x_1, x_2, \ldots can be listed

Example 17: Suppose we record high, low body temperatures for a patient on a given day; form a sample space of all possible pairs of measurements:

$$S = \{(H,L): H \ge L\}$$

Define a random variable $X : S \to \mathbb{R}$ as follows:

for each element of S, let

$$X(H,L) = H - L =$$
 temperature range

Suppose we find that.

$$\begin{array}{ll} F(x) &=& P(\,(H,L):\,(H-L) \leq x) \\ &=& P(X \leq x) = \left\{ \begin{array}{ll} 1 - e^{-x} & \text{if } x \geq 0 \\ 0 & \text{if } x < 0 \end{array} \right. \end{array}$$

If F has a derivative,

of X.

$$F'(x) = f(x) =$$
 density function

Example 18: here density $= f(x) = \begin{cases} e^{-x} \\ 0 \end{cases}$

check:
$$F(x) = \int_{-\infty}^{x} f(x')dx'.$$

Example 19: Normal: density is $\frac{1}{\sqrt{2\pi}} e^{-x^2/2}$

5. Distribution measure: Given a random variable (RV) X, we define the *distribution measure* μ to be the probability measure on the basic Borel sets in \mathbb{R} , defined by

$$\mu(A) = P(X \in A) = P(s \in S : X(s) \in A),$$

where P is the basic probability measure on S.

Note that if A = (a, b) = interval then $\mu(A) = F(b) - F(a)$ where F = distribution function of X.

6. Random vectors

Given a probability (sample) space S, if we have more than one random variable X_1, \ldots, X_p , we denote the function

$$\mathbf{X}(s) = (X_1(s), \dots, X_p(s))$$

i.e. an ordered set of functions as a random vector.

We define the (joint) distribution measure μ of the random vector **X** (defined on all Borel sets in \mathbb{R}^p) by the definition that for any (Borel) set $A \subset \mathbb{R}^p$,

$$\mu(A) = P(\mathbf{X} \in A) = P(s \in S : \mathbf{X}(s) \in A),$$

where P is the basic probability measure on S.

More probability:

1. Conditional probability

Example 1: Die roll:

$$A =$$
 event of even roll $= \{2, 4, 6\}$

B = event of roll divisible by 3 = $\{3, 6\}$

$$P(A) = \frac{1}{2}; \qquad P(B) = \frac{1}{3}$$

Define conditional probability

P(B|A) = Prob. of B given A occursHow to compute P(B|A)?

Create *reduced sample space* consisting only of A

and compute what portion of A is in B.

Here reduced sample space $A = \{2, 4, 6\}$.

Assuming equal probabilities:

$$P(2|A) = P(4|A) = P(6|A) = 1/3.$$

Note P(B|A) = P(6|A) = 1/3.

Now note
$$P(A \cap B) = \frac{1}{6}$$
; thus
 $P(B|A) = \frac{1}{3} = \frac{\frac{1}{6}}{\frac{1}{2}} = \frac{P(A \cap B)}{P(A)}$

Illustrates general mathematical definition

$$P(B|A) = \frac{P(A \cap B)}{P(A)}$$

٠

2. Independence:

We say events B and A are *independent* if

$$P(B|A) = P(B) \quad \Leftrightarrow \quad \frac{P(B \cap A)}{P(A)} = P(B)$$

 $\Leftrightarrow \quad P(A \cap B) \,=\, P(A) \, P(B)$

In general a collection of events A_1, \ldots, A_n is independent if for any subcollection A_{i_1}, \ldots, A_{i_n} :

 $P(A_{i_1} \cap A_{i_2} \dots \cap A_{i_n}) = P(A_{i_1})P(A_{i_2}) \cdots P(A_{i_n})$

Example 2: Consider sequence x_1, x_2, \ldots, x_k of bases forming gene *g*.

Q: Are the successive bases x_i, x_{i+1} independent?

For example, given we know the base $x_i = A$, does that change the probability $P(x_{i+1} = C)$.

More specifically, do we have

$$P(x_{i+1} = \mathbf{C} | x_i = \mathbf{A}) = P(x_{i+1} = \mathbf{C})$$
? (3)

If (3) also holds for all possible choices (C,G,T) replacing A and all choices replacing C, then x_{i+1} and x_i are independent.

Expect: in actual DNA exon region has more dependence from base to base than an intron does.

Why? Evolutionary structural pressures - exons are more important to survival

Independence of RV's **3. Independence of RV's**

Henceforth given a subset A of sample space S, we assume A is measurable unless stated otherwise.

Definition 10: Let *S* be a sample (probability) space. Let $X : S \to \mathbb{R}$ be a random variable (i.e., a rule assigning a real number to each outcome in *S*)

If $A = [a, b] \subset \mathbb{R}$, define

 $P(X \in A) = P(a \le X \le b)$

Independence of RV's = P(all outcomes s whose value X(s) is between a and b)

$$= P(s \mid a \le X(s) \le b).$$

Recall:

Definition 11: Let *S* be a sample space, and X_1, X_2 be random variables. Then X_1, X_2 are *independent* if for any sets $A_1, A_2 \subset \mathbb{R}$,

 $P(X_1 \in A_1, X_2 \in A_2) = P(X_1 \in A_1)P(X_2 \in A_2)$

Independence of RV's

Generally X_1, \ldots, X_n are independent if $P(X_1 \in A_1, \ldots, X_n \in A_n)$ $= P(X_1 \in A_1)P(X_2 \in A_2)\ldots P(X_n \in A_n)$

Independence of RV's More to come on these topics-