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15.4.  Without loss we can assume that  , (why?).  Show then the correlation. œ !
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Why can you conclude that bagging yields some improvement in variance over the
variance (1) of a single bootstrap?  Nevertheless, show it does not help much in
comparison to the variance  of the standard estimate   of the full sample mean.5#
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13.3. Background  :   Note that this problem involves two separate inference procedures.
(1)  The first is the Bayes rule, which assumes that (somehow) we already know the exact
joint probability distribution of the feature vector   and the class  .  The\ œ B ] œ 5
Bayes rule is then the best rule for choosing the response   given   (i.e. the one that5 B
minimizes the probability of being wrong!).

(2) The second is one-nearest neighbors, i.e., for a test point   finding the closestB
training point   to it and choosing its (known) class  .B C3

We want to express the error rate of (2) in terms of that of (1).
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be one of the training points (as assumed here), then the predicted class of   will be theB
same as the (true) class   of  , though this not guaranteed to be the class of  ,C œ 5 B B3 3

since the class is probabilistically determined even if the feature vector is identical.
----------------------------------------------------------
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that if the data size gets large, 1-nearest neighbor almost always finds a training point  B"
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