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15.4.  Without loss we can assume that  , (why?).  Show then the correlation. œ !
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Why can you conclude that bagging yields some improvement in variance over the
variance (1) of a single bootstrap?  Nevertheless, show it does not help much in
comparison to the variance  of the standard estimate   of the full sample mean.5#
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with  , proving equivalence of (12.29) and (12.25).K x x34 3 4œ OÐ ß Ñ

13.3. Background  :   Note that this problem involves two separate inference procedures.
(1)  The first is the Bayes rule, which assumes that (somehow) we already know the exact
joint probability distribution of the feature vector   and the class  .  The\ œ B ] œ 5
Bayes rule is then the best rule for choosing the response   given   (i.e. the one that5 B
minimizes the probability of being wrong!).

(2) The second is one-nearest neighbors, i.e., for a test point   finding the closestB
training point   to it and choosing its (known) class  .B C3

We want to express the error rate of (2) in terms of that of (1).
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assuming the correct class for point   is  .  Bayes error is expected error assumingB 5 œ C
we use the Bayes algorithm, i.e., choose the best   given the underlying probabilityC œ 5‡

model.

On the other hand, if we use one nearest neighbor and the test point   happens toB œ B3

be one of the training points (as assumed here), then the predicted class of   will be theB
same as the (true) class   of  , though this not guaranteed to be the class of  ,C œ 5 B B3 3

since the class is probabilistically determined even if the feature vector is identical.
----------------------------------------------------------
Show for the 1-nearest neighbor method above that expected error is
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that if the data size gets large, 1-nearest neighbor almost always finds a training point  B"

that is very close to the test point   (even if they are not identical as above).  AssumingB
that the underlying Bayes distribution is continuous in  , show this will mean that theB
distribution   (as a function of  )  is almost identical to  , where   is the: ÐBÑ 5 : ÐB Ñ B5 5 3 3

training point closest to . Show this allows us to use the above bound with increasingB



accuracy as the sample size gets large.  The statement in the problem about  P"

convergence is not clear and can be omitted.


