Suggestions, PS 13

14.14. Background: As usual we have a random variable (rv) X = (X3, ..., X,) from
which we have generated anew rv S = S(i, ..., S,)7 satisfying the relationship
X = AS,where A isa p x p matrix. The matrix A is chosen so that S has
covariance I (i.e., its components are independent standard normal). The implied
model thusis X = AS, or

Xy =a;1S1 +apSy + ...+ alpSp

Xp = aplSl + ap25’2 + ...+ appSp
We can also choose to keep only the first ¢ < p terms in each equation, interpreting the
remainder as a random error :

Xi=anS1+ a5 + ...+ aquq + €1

Xp = ap151 + CLmSQ + ...+ apqu + €
The implied model is then

X =AS,
where now
S = (S1,...,8,)"
and A = A, hasonly ¢ ofits original columns.
We then have (with € = (e1,...,¢,)T)

CovX =ACovS AT +Cove=AAT + Cove=AAT+D,., (1)

where D is the diagonal matrix with entries V' (¢;).

To formulate (1) as a correlation identity, form the diagonal matrix W with diagonal
entries

Wi = VV(X;) = V(AAT);V (e;) -
Thus the correlation matrix of X is
p(X)=BBT + W-'D.W,
where B = W 1A (why?).

14.21. Foragraph G with m connected components, (not connected to each other by
any edges), we can number the vertices in the first component as vy, ..., vi,, , the second
Va1, ..., Vo, through the m™ as v,,1, V2, ..., Vs, Given function f(v) on the vertices

f(lfn)

of G then f= : has the ordered values in it. Show using this ordering of

f(vnn,,)



the vertices, the weight matrix W = (w;;) will have a block structure
Wy 0 0 0

W = 8 V[O/Q .O 8 , with TW,,, the matrix restricted to component . Recall ,
0 0 0 W,
g1 0 ... 0
_ 10 g2 O : .
L=G-W where G=| . 0 . 0 has the degrees g of all vertices in
d O' Gmn,,
all components. Recall for any vertex i, g =) w;;, - why? Show thus that the first
JiJF
row of L (along with other rows) sumsto g;; — > w;; = 0. [Note sometimes we are
j#1

using just a single index 4 to number the vertices v; (rather than v,,, referring also to
the cluster m) when it's convenient — in this case w;; has the usual two indices i and

J
Show also that L inherits the block structure of G and W, so

Ly 0 0 O

o L, 0o o
L=10o 0o . o
0 0 0 L,

For a vector f of an indicator function of the first component, show the first n, entries in
f are 1 and the rest are 0. Divide f into blocks corresponding to graph components, so

f; Lify
f= f? and show Lf = L%fQ . For this f the first block f; = 1, (acolumn of
£ Lonfrm

1's), while the remaining blocks fy,,...f, = 0. Thus (using the fact the rows of block
Ly add up to 0) show Lf =0, and similarly L;f; =0 for ¢ > 1. Show Lf=0,s0 f
is a 0-eigenvector of L, and the same holds for the indicator of any other component
besides the first.

Now show the only O-eigenvectors of L are the indicators of some component of the

graph. Let f be an eigenvector of L (with positive or negative entries) with Lf = 0.
Then show

fo—qufQ Zwufzf] wa flf7



= Zwm(%(fz? +f7) - fifj)-
i

1
= -3 ;wij(fi —f)?.

Now show that if f; and f; represent points in the same component of the graph, then
fi — f; . How does this prove the result?

18.2. Background: This problem shows that the shrunken centroids estimator, as is
implied in its description, is a principled solution to an optimization problem. Recall that
the point of shrunken centroids is to 'move’ the centers of the LDA of a linear
discriminant analysis (LDA) classifier closer together, so that only strongly separated
features (dimensions) of the centers stay separated. The idea is that if the centers of two
LDA classes are weakly separated along a given dimension, then they should be
coalesced (along that dimension only), so that this dimension no longer plays a role in
separating the two classes.

Shrunken centroids has a rule for moving the centroids toward each other that seems
somewhat ad hoc. What this problem shows is that the new locations of the centroids
(class centers) can in fact be chosen as a solution to an optimization problem, namely
(18.55). In LDA the estimate 1 + i, of the centroid a given class & is just the mean

X, = (Zp1, ..., Trp) Of the data points z; in class k. This mean can be thought of as
obtained by minimizing the first part (the triple sum) in (18.55). However we wish here
to treat the centroids just like the regression coefficients in Lasso, in which we try to
make the centroids closer (i.e., make the 5, smaller) by using a simple rule, here by
introducing a penalty for the sizes of the fi, (the double sum in (18.55)). The idea again
is that noise will make some of the centroids large, so that shrinking them in a principled
way will tend to quench the noisy ones but preserve the informative ones.

Notice the logic of this problem. We are assuming a dataset {x;,y;}Y, with feature

vectors X; = (1, ..., x;p) that have components x;; which are independent and come
from an underlying fixed normal distribution N (z¢; + e, a?) (with & denoting the class
k = y of the data point X;). The usual way of estimating the centroid j:; + ;. of the
underlying normal for the class & is to take all the x; in the class £ and to find their
mean. However, this method tries to 'shrink out' the noise from this estimate by imposing
a penalty on large deviations 4.5, from the center. Thus we estimate our values fi, /i,

as



fi, iy, = (argmin L = ZZZ (wij — “J k)

'y
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whose second term is a penalty for large 1, values. The goal of this problem is to show
that the solution (7i;, 7i;,) above is the same as the centroids that would have arisen
from using the standard shrunken centroids method.

To minimize

\)

LYy y ey e el
j ik ’
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first solve for the minimum with respect to 1, assuming you know the ;.. Fixing all
but 1, show

Hj = N ZZ Tij — Pjk) = Tj— [ (la)

k ieCy
where i, = %ujk. Now to minimize with respect to s, with 1, fixed: show that
2

if

1 (@ij — pj — Mjk)z |14
Lix =5 > > + AN

1€Cy, J 8]

then L =3 Lj and it suffices to minimize L. one at atime. First minimize over the
J.k

range where p 5 > 0. Without the absolute value in (*), you can differentiate L awith

respect to /. to get

—— Ly = — Ny J J J + M/ N, — =
O’ 52 S;

SO
_ SiA
=y~ g

On the other hand, if (1) is non-positive (i.e less than or equal to 0), show
Mk = 0 (2>



minimizes L. Indeed if the point in (1) is non-positive show the derivative gfk of L

without the absolute value must be positive at all points to the right of this poin't, ie.,

%ij is positive for all values of s j, > 0. Thus show where i > 0, pj =0

minimizes L. Thus show Lj, is minimized by (1) if its right side is non-negative, and
by 0 otherwise.

Similarly over the range 1.5, < 0, show (1) is replaced by
z /LS (3)
12215 jk M \/Fk
and again if the value g, in (3) is positive, it is replaced by 0 for the same reason as
above. Thus conclude,

Sj A

Tik = 1~ if this is positive
Hik =\ Tje — pj + \7]\% if this is negative
0 otherwise

— sign(z;; — 1) (m . 7%) . (1)

This solves the above optimization problem, but it is not yet in terms of the original data
x;;. The original system of equations for 1; and 1, has been replaced by the system
consisting of (4) together with the original equation

ftj = Tj— i (4aa)

Now solve this system (4), (4aa) for p; and pj, interms of the original data x;;. Since
we know that any solution of (4) and (1a) gives a minimum value of L in (*), we seek
any solution. If you can find a candidate solution and verify that it satisfies (is consistent
with) the system (4) and (1a), you are done.

To do this make a choice of j; and 15 that will satisfy both (4) and (4aa). Try using
i = W-mEdk,m(fﬂg). (43)

Here w-med, - (Z;:) denotes the weighted median over all k of the points 7, with

weights /Nj (with j fixed). This is the point ; such that the sum of the weights
m of the points z;;, to its right and the sum of the weights to its left are equal. Notice
that if the V;, are all the same then p; is the standard median (with respect to k) of the
points ;. Then choose 1. as in (4). Now show both (4) and (4aa) are satisfied, so
equations (4a) and (4) solve the optimization.

To do this it is clear (4) holds since it defines 1, . Now to show (1a) holds, i.e. that



pj+ = T;, (5)
note that the %-weighted average of both sides of (4) over £ gives 1; = % %ujk on

the left. On the right, comparing (4) to its two possible values (1) and (3), show that
because 4i; = w-med, /. (Z;x) you have on the right

Nk|: Sj)\:| Nk 1
S g — )£ L =S ) =S £ /Ny s A
;N (]k :u]) \/Nk. zk:N( Jk :u,]) N; koj

1
:Tj—,uj-I'NSj)\Zﬂ:\/Nk.
k

Show by the choice of 1., the last sum over k vanishes since by definition the sum of the
weights of the points to the right of 1:; (for which the sign in the sum is -) and to the left
of (for which itis +) is 0. Thus show the sum over the right sides of (4) is z; — ;.
Thus show averaging (4) on both sides with weights % gives iz; =T; — p; , verifying
(5) holds.

Thus you have shown that (4a) and (4) solve the optimization of minimizing L. Notice
this gives the same shrinkage as shrunken centroids, but toward the weighted median 1;
of the 7 ; instead of the mean.

Now to interpret solution (4), show that if we interpret the 1 ; + 11, as the new
centroids to be used in our regular discriminant functions 65 (-) (the regular centroids
would be 7};), then in terms of the notation of the text (Section 18.2) you would have
(with the suggested setting of sy = 0 and m; = Nik along with the replacement of z;

by p;):

dj = M1 (52)

s/ N

Recall that the shrinkage in 18.2 replaces dj. in (5a) by

dy.; = sign (di;) (|dp| — A) .

Show this means that we are replacing the distance z;; — z; = dkjsj/m (with the
suggested choice of sy =0 and mi = 1/N},) between the old centroids z;; and the
mean z; with a new distance

new centroid displacement

— dy;3/\/ Vi = sign(diy)(Idis| — A) 4 5/3/ Ny

= sign (Tp; — ) (|Tu; — 115] — A sj//Ni) . (5b)



Show this compares with our calculation earlier, which gives the replacement of the old
centroid displacement 7z, = 7); — T; with the new one

SiA
new centroid displacement = i, = sign(Z;x — ;) <|fjk — i — J—) (6)
VINe/ 4

Comparing (5b) and (6), show we must have A = ), and indeed with the replacements
so =0 and m? = 1/ Ny, the new implied centroids are the same (however, replacing the
mean 7; by the median ;) using both methods.

18.4. Background: We are effectively trying to reduce the nominal dimensionality of a
dataset from p dimensions to N dimensions. Recall that /N datapoints within a feature
space F = R of p dimensions effectively live in a hyperplane of N — 1 dimensions
— so rotating a hyperplane of N dimensions into the proper position in R? should be
sufficient to contain the entire dataset. Then re-representing the dataset within this N-
dimensional hyperplane is what is accomplished in the new data matrix R. That is, the
row vectors r’ of are a re-representation of the data row vectors x” making up the data
matrix X , so that their geometry (and hence resulting inferences) are preserved.

Thenew N x N data matrix R is obtained via the singular value decomposition

X =UDV? =RVT,
with R=UD.

If 73 represents a ridge regression coefficient based on the original dataset, then we have
shown that

B = (XTX+\)"'XTy, (1)
where y is the set of measured values in the dataset. We wish to show that this equals
B=(VRTR+ )Ry )
Toshow that (1) = (2), show from the form of V/ that
XTRT (RTR 4+ Al) = (XTX + Al)V,

and right multiply by (RTR + A1)~!R” and left multiply by (XTX + A1)~



