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14.14.  Background:   As usual we have a random variable (rv)   from\ œ Ð\ ß ÞÞÞß\ Ñ" :

which we have generated a new rv   satisfying the relationshipW œ WÐ ß ÞÞÞß W Ñ" :
X

\ œ EW E : ‚ : E W, where   is a   matrix.   The matrix  is chosen so that   has
covariance   (i.e., its components are independent standard normal).  The impliedM
model thus is  , or\ œ EW
   \ œ + W  + W  ÞÞÞ  + W" "" " "# # ": :

   ã
   \ œ + W  + W  ÞÞÞ  + W: :" " :# # :: :

We can also choose to keep only the first   terms in each equation, interpreting the;  :
remainder as a random error  :
    \ œ + W  + W  ÞÞÞ  + W " "" " "# # "; ; "%
    ã
   \ œ + W  + W  ÞÞÞ  + W : :" " :# # :; ; :%
The implied model is then

\ œ EW  ,

where now

W œ ÐW ß ÞÞÞß W Ñ" ;
X

and   has only   of its original columns.E œ E ;;

We then have (with  )% % %œ Ð ß ÞÞÞß Ñ" :
X

Cov  Cov Cov Cov  , (1)\ œ E W E  œ EE  œ EE HX X% % T
%

where    is the diagonal matrix with entries  .H Z Ð Ñ% %3

To formulate (1) as a correlation identity, form the diagonal matrix   with diagonal[
entries

[ œ Z Ð\ Ñ œ ÐEE Ñ Z Ð Ñ33 3 33 3
XÈ È %  .

Thus the correlation matrix of   is\
   ,3Ð\Ñ œ FF [ H [X " "

%

where   (why?).F œ [ E"

14.21.     For a graph   with   connected components, (not connected to each other byK 7
any edges), we can number the vertices in the first component as  , the second@ ß ÞÞÞß @"" "83
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the vertices, the weight matrix   will have a block structure[ œ ÐA Ñ34
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7 , with  the matrix restricted to component  .  Recall  ,

P œ K [ K œ 1
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 all components.  Recall for any vertex  ,  - why?  Show thus that the first3ß 1 œ A�
4À4Á3

34

row of   (along with other rows) sums to  .  [Note sometimes we areP 1  A œ !"" 34
4Á"

�
using just a single index   to number the vertices   (rather than   referring also to3 / /3 78

the cluster  ) when it's convenient in this case   has the usual two indices   and7  A 334

4.]

Show also that   inherits the block structure of    and  ,  soP K [
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For a vector   of an indicator function of the first component, show the first   entries inf 8"

f f  are 1 and the rest are 0.  Divide    into blocks corresponding to graph components, so

f f f f 1

f f
f f
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" 8 and show  .  For this    the first block    (a column ofP
"

1's), while the remaining blocks  .  Thus (using the fact the rows of blockf f 0"# 8ß ÞÞÞ œ
7

P P P 3  " P" " 3 add up to 0) show  , and similarly    for  .  Show  , so  f 0 f 0 f 0 fœ œ œ3

is a 0-eigenvector of  , and the same holds for the indicator of any other componentP
besides the first.

Now show the -eigenvectors of   are the indicators of some component of theonly 0 P
graph.  Let   be an eigenvector of   (with positive or negative entries) with .f f P P œ !
Then show

f f> # #
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Now show that if   and  represent points in the same component of the graph, then0 03 4

0  03 4  .  How does this prove the result?

18.2. Background :  This problem shows that the shrunken centroids estimator, as is
implied in its description, is a principled solution to an optimization problem.  Recall that
the point of shrunken centroids is to 'move' the centers of the LDA of a linear
discriminant analysis (LDA) classifier closer together, so that only strongly separated
features (dimensions) of the centers stay separated.  The idea is that if the centers of two
LDA classes are weakly separated along a given dimension, then they should be
coalesced (along that dimension only), so that this dimension no longer plays a role in
separating the two classes.

Shrunken centroids has a rule for moving the centroids toward each other that seems
somewhat ad hoc.  What this problem shows is that the new locations of the centroids
(class centers) can in fact be chosen as a solution to an optimization problem, namely
(18.55).  In LDA the estimate   of the centroid a given class   is just the mean. .s s 55

x5 5" 5:œ (B ß ÞÞÞß B Ñ   of the data points   in class .   This mean can be thought of asB 53

obtained by minimizing the first part (the triple sum) in (18.55).  However we wish here
to treat the centroids just like the regression coefficients in Lasso, in which we try to
make the centroids closer (i.e., make the   smaller) by using a simple rule, here by.s5

introducing a penalty for the sizes of the   (the double sum in (18.55)).   The idea again.s5

is that noise will make some of the centroids large, so that shrinking them in a principled
way will tend to quench the noisy ones but preserve the informative ones.

Notice the logic of this problem.  We are assuming a dataset   with featureÖx3 3 3œ"
Rß C ×

vectors   that have components   which are independent and comex3 3" 3:œ ÐB ß ÞÞÞß B Ñ B34

from an underlying fixed normal distribution   (with  denoting the classRÐ  ß Ñ 5. . 54 45 4
#

5 œ C of the data point  ).  The usual way of estimating the centroid   of thex3 . .4 45

underlying normal for the class   is to take all the   in the class  and to find their5 5x3

mean.  However, this method tries to 'shrink out' the noise from this estimate by imposing
a penalty on large deviations   from the center.  Thus we estimate our values . . .45 45s sß

as
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whose second term is a penalty for large   values.  The goal of this problem is to show.45

that the solution   above is the same as the centroids that would have arisenÐ ß Ñs s. .4 45

from using the standard shrunken centroids method.
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first solve for the minimum with respect to  , assuming you know the  .  Fixing all. .4 45

but  , show.4
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where   .  Now to minimize with respect to  , with   fixed:  show that. . . .4
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then   and it suffices to minimize   one at a time.  First minimize over theP œ P P�
4ß5

45 45

range where  .  Without the absolute value in (*), you can differentiate   with.45   ! P +
respect to   to get  .45
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On the other hand, if (1) is non-positive (i.e less than or equal to  ), show!
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minimizes  .  Indeed if the point in (1) is non-positive show the derivative  of  P P`P
`.45

without the absolute value must be positive at all points to the right of this point, i.e.,
`P
` 45 45 45 45.45

P   !   ! œ ! is positive for values of  .  Thus show where , all . . .

minimizes  .  Thus show   is minimized by (1) if its right side is non-negative, andP P45

by 0 otherwise.

Similarly over the range  , show (1) is replaced by .45 Ÿ !
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and again if the value   in (3) is positive, it is replaced by 0 for the same reason as.45

above.  Thus conclude,
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This solves the above optimization problem, but it is not yet in terms of the original data
B34 4 45.  The original system of equations for   and  has been replaced by the system. .
consisting of (4) together with the original equation

. .4 4 4œ B  Ð Ñ4aa

Now solve this system (4), ( aa) for   and   in terms of the original data  .  Since% B. .4 45 34

we know that any solution of (4) and (1a) gives a minimum value of   in (*), we seekP
any solution.  If you can find a candidate solution and verify that it satisfies (is consistent
with) the system (4) and (1a), you are done.

To do this make a choice of  and   that will satisfy both (4) and ( aa).  Try using. .4 45 %

.4 455ß Rœ ÐB ÑÞ Ð Ñw-med 4aÈ 5

Here  w-med  denotes the weighted median over all   of the points  , with5ß R 45 45È 5
ÐB Ñ 5 B

weights   (with   fixed).  This is the point   such that the sum of the weightsÈR 45 4.ÈR B5 45 of the points   to its right and the sum of the weights to its left are equal.  Notice
that if the   are all the same then   is the standard median (with respect to  ) of theR 55 4.
points  .  Then choose as in (4).  Now show both (4) and (4aa) are satisfied, soB45 45.
equations (4a) and (4) solve the optimization.

To do this it is clear (4) holds since it defines  .  Now to show (1a) holds, i.e. that.45
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the left.  On the right, comparing (4) to its two possible values (1) and (3), show that
because  w-med  you have on the right.4 455ß Rœ ÐB ÑÈ 5
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Show by the choice of  the last sum over  vanishes since by definition the sum of the.4 5
weights of the points to the right of   (for which the sign in the sum is -) and to the left.4

of  (for which it is +) is 0.  Thus show the sum over the right sides of (4) is  .B 4 4.

Thus show averaging (4) on both sides with weights   gives   , verifyingR
R 4 4 4
5 . .œ B 

(5) holds.

Thus you have shown that (4a) and (4) solve the optimization of minimizing  .  NoticeP
this gives the same shrinkage as shrunken centroids, but toward the weighted median  .4

of the   instead of the mean.B54

Now to interpret solution (4), show that if we interpret the   as the new. .4 45
centroids to be used in our regular discriminant functions   (the regular centroids$5

ÞÐ Ñ
would be  ), then in terms of the notation of the text (Section 18.2) you would haveB54

(with the suggested setting of  and  , along with the replacement of   = œ ! 7 œ B! 45
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Recall that the shrinkage in 18.2 replaces   in (5a) by.45
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Show this means that we are replacing the distance   (with theB  B œ . = Î R56 4 54 4 5È
suggested choice of   and  )  between the old centroids   and the= œ ! 7 œ "ÎR B! 5 545

#

mean   with a new distanceB4

     new centroid displacement  
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Show this compares with our calculation earlier, which gives the replacement of the old
centroid displacement   with the new one.45 54 4œ B  B

new centroid displacement sig (6)œ œ 8ÐB  Ñ lB  l 
=
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Comparing (5b) and (6), show we must have  , and indeed with the replacements? -œ
= œ ! 7 œ "ÎR! 55

#and  , the new implied centroids are the same (however, replacing the
mean   by the median  ) using both methods.B4 4.

18.4. Background  :  We are effectively trying to reduce the nominal dimensionality of a
dataset from   dimensions to   dimensions.  Recall that   datapoints within a feature: R R
space   of   dimensions effectively live in a hyperplane of   dimensionsJ œ : R  "‘:

 R so rotating a hyperplane of   dimensions into the proper position in   should be‘:

sufficient to contain the entire dataset.  Then re-representing the dataset within this  -R
dimensional hyperplane is what is accomplished in the new data matrix  .  That is, theV
row vectors   of  are a re-representation of the data row vectors   making up the datar x3

X X

matrix  , so that their geometry (and hence resulting inferences) are preserved.\

The new   data matrix   is obtained via the singular value decompositionR ‚R V

     ,X UDV RVœ œX X

with  .R UDœ

If    represents a ridge regression coefficient based on the original dataset, then we have"s

shown that

 ,              (1)"s œ ÐX X X yX " X MÑ-

where    is the set of measured values in the dataset.  We wish to show that this equalsy

 .                                  ( (2)"s œ Z (                                         R R I R yX " X- Ñ
------------------------------------------------------------------------------------------
To show that (1) = (2), show from the form of     thatV

                                          ,X R R R I X X I VX X X X"
Ð  Ñ œ Ð  Ñ- -

and right multiply by   and left multiply by  .Ð ÐR R I R X X IX " X X " Ñ  Ñ- -


