Suggestions - Problem Set 1

Hastie, **2.5** (a) This will be similar to that done in class, with use of equation (3.8) in the last line.

Some comments about notation -- see the Notes on matrix notation on the web page for more details. If $\mathbf{y} = (y_0, y_1, ..., y_p)^T$ is a random vector, then the expression $V(\mathbf{y})$ is the corresponding *covariance matrix*, with i, j component

 $(V(\mathbf{y}))_{ij} = E[y_i - \overline{y}_i)(y_j - \overline{y}_j)]$, where in general we denote $\overline{a}_i = E(a_i)$ as the mean value of a_i . However, if y is a scalar (non-vector) random variable, then the same notation $V(y) = E[(y - \overline{y})^2]$ represents the variance of y (now a single number).

A comment about eq. (3.8). We are computing $V(\hat{\beta})$, the *covariance matrix* of the random vector $\hat{\beta} = (\hat{\beta}_0, ..., \hat{\beta}_p)^T$. The *i*, *j* entry of this matrix is

$$V(\widehat{\beta})_{ij} = E[\widehat{\beta}_i - \overline{\widehat{\beta}}_i][\widehat{\beta}_j - \overline{\widehat{\beta}}_j].$$

In (3.8), note we are *assuming* we know the x part of the dataset, i.e., the matrix **X**, but *not* the **Y** part. We are taking the expectation with respect to **y** but not **X**. Thus appropriate subscripts here would be

$$V(\widehat{\beta}) = V_{\mathbf{y}|\mathbf{X}}(\widehat{\beta}) = E_{\mathbf{y}|\mathbf{X}}(\widehat{\beta} - E_{\mathbf{y}|\mathbf{X}}(\widehat{\beta}))^2.$$

We are also given

$$V_{y|\mathbf{X}}(\widehat{\boldsymbol{\beta}}) = \sigma^2 (\mathbf{X}^T \mathbf{X})^{-1}; \qquad (2)$$

note σ^2 is just the constant (non-matrix) variance of the error ϵ , while $(\mathbf{X}^T \mathbf{X})^{-1}$ is now a fixed matrix. We are treating $\mathbf{y} = (y_1, ..., y_N)^T$ as a random variable – this is why $V(\hat{\beta})$ contains a σ term in (2) above.

In (2.27), we no longer treat
$$\mathbf{X} \equiv \begin{bmatrix} \mathbf{x}_1 \\ \mathbf{x}_2 \\ \vdots \\ \mathbf{x}_N \end{bmatrix}$$
 as a fixed matrix - we treat each data point \mathbf{x}_i

in \mathcal{T} as a random variable with some unknown but fixed distribution $p(\mathbf{x})$, which is why we take expectations over \mathbf{X} below. We have (why is \mathbf{x}_0 independent of \mathbf{X} ?):

$$\operatorname{Var}_{\mathcal{T}}(\widehat{y}_0) = V_{\mathcal{T}}(\widehat{y}_0) = V_{\mathcal{T}}(\mathbf{x}_0^T \widehat{\beta}) = \mathbf{x}_0 V_{\mathcal{T}}(\widehat{\beta}) \mathbf{x}_0^T.$$

Show (you may use (3.8))

$$V_{\mathcal{T}}(\widehat{\beta}) = E_{\mathcal{T}}[(\widehat{\beta} - \overline{\widehat{\beta}})^2] = E_{\mathbf{X},\mathbf{y}}[(\widehat{\beta} - \overline{\widehat{\beta}})^2]$$
$$= E_{\mathbf{X}}E_{\mathbf{y}|\mathbf{X}}[(\widehat{\beta} - \overline{\widehat{\beta}})^2] = \sigma^2 E_{\mathbf{X}}[(\mathbf{X}^T\mathbf{X})^{-1}].$$

Thus show

$$V_{\mathcal{T}}(\widehat{y}_0) = \sigma^2 \mathbf{x}_0 E_{\mathbf{X}}[(\mathbf{X}^T \mathbf{X})^{-1}] \mathbf{x}_0^T$$

and

$$\begin{split} \operatorname{EPE}(\mathbf{x}_{0}) &= E_{y_{0}|\mathbf{x}_{0}} E_{T}(y_{0} - \widehat{y}_{0})^{2} \\ &= V(y_{0}|\mathbf{x}_{0}) + E_{\tau}[\widehat{y}_{0} - E_{\tau}(\widehat{y}_{0})]^{2} + [E_{T}\widehat{y}_{0} - \mathbf{x}_{0}^{T}\beta]^{2} \\ &= V(y_{0}|\mathbf{x}_{0}) + V_{T}(\widehat{y}_{0}) + \operatorname{Bias}^{2}(\widehat{y}_{0}) \\ &= V(y_{0}|\mathbf{x}_{0}) + \sigma^{2}\mathbf{x}_{0}E_{\mathbf{X}}[(\mathbf{X}^{T}\mathbf{X})^{-1}]\mathbf{x}_{0}^{T} + \operatorname{Bias}^{2}(\widehat{y}_{0}). \end{split}$$

Why is this the same as (2.27)? Now note $\mathcal{T} = \{(\mathbf{x}_i, y_i)\}_{i=1}^N$ contains all of the information in **X** and there is no **y** in the expectation. Why can we replace $E_{\mathbf{X}}[(\mathbf{X}^T\mathbf{X})^{-1}]$ by $E_{\mathcal{T}}[(\mathbf{X}^T\mathbf{X})^{-1}]$ above?

Final remark: if you compare equation (2.27) with the analogous equation in the class notes, notice the last two squared terms appear in a different order in (2.27). But equation (2.27) is exactly the equation in the notes, specialized to the case of linear regression.

(b) We need to compute

$$E_{\mathbf{x}_0}\mathbf{x}_0^T \operatorname{Cov}(X)^{-1}\mathbf{x}_0.$$

Note that $X = (X_0, ..., X_p)^T$ is the random vector giving the underlying distribution of the coordinates of a typical input data point $\mathbf{x} = (x_1, ..., x_p)$ (i.e., \mathbf{x} is one of the points in the training set T), and $\operatorname{Cov}(X)$ is the covariance matrix, i.e., $\operatorname{Cov}(X)_{ij} = E[(X_i - E(X_i)(X_j - E(X_j))]]$. Letting $W = \operatorname{Cov}(X)^{-1}$, show

$$E_{\mathbf{x}_0}\mathbf{x}_0^T W \mathbf{x}_0 = E_{\mathbf{x}_0} \operatorname{tr} \left[\mathbf{x}_0^T W \mathbf{x}_0 \right] = E_{\mathbf{x}_0} \operatorname{tr} \left[W \mathbf{x}_0 \mathbf{x}_0^T \right] = \operatorname{tr} \left[W E_{\mathbf{x}_0} \left(\mathbf{x}_0 \mathbf{x}_0^T \right) \right]$$
$$\operatorname{tr} \left[W \operatorname{Cov}(\mathbf{x}_0) \right] = \operatorname{tr} \left[(\operatorname{Cov} X)^{-1} \operatorname{Cov}(\mathbf{x}_0) \right] = p. \tag{3}$$

Why were we allowed to add in the trace above? How was tr(AB) = tr(BA) used?. Why are the random vectors X and \mathbf{x}_0 (also viewed as random) identically distributed? Hence verify the last equality in (3) above.

Hastie, Problem 2.7 (a) For the case of linear regression, show

$$\widehat{f}(x_0) = \widehat{y}_0 = \mathbf{x}_0^T \widehat{\beta} = J^T \mathbf{y},$$

where $J^T = \mathbf{x}_0 (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}$. What are the dimensions of J^T ? Thus show we can write

$$\widehat{f}(\mathbf{x}_0) = \sum_{i=1} J_i y_i.$$

For k-nearest neighbors, show

$$\widehat{f}(\mathbf{x}_0) = rac{1}{k} \; \sum_{\mathbf{x}_i \in N_k(\mathbf{x})} \, y_i \; ,$$

where $N_k(\mathbf{x})$ is the collection of k nearest neighbors in the set $\mathcal{X} = {\{\mathbf{x}_i\}_{i=1}^N}$. Show

$$\widehat{f}(\mathbf{x}_0) = rac{1}{k} \, \sum_{i=1}^N \ell_i(\mathbf{x}_0,\mathcal{X}) y_i \, .$$

where

$$\ell_i(\mathbf{x}_0, \mathcal{X}) = \begin{cases} 1 & \text{if } \mathbf{x}_i \in N_k(\mathbf{x}_0) \\ 0 & \text{otherwise} \end{cases}.$$

(b) Justify that

$$E_{Y|X}(f(\mathbf{x}_0) - \hat{f}(\mathbf{x}_0))^2 = E_{Y|X}(f(\mathbf{x}_0) - E_{Y|X}\hat{f}(\mathbf{x}_0) + E_{Y|X}\hat{f}(\mathbf{x}_0) - \hat{f}(\mathbf{x}_0))^2$$
$$= (f(\mathbf{x}_0) - E_{Y|X}\hat{f}(\mathbf{x}_0))^2 + E_{Y|X}(\hat{f}(\mathbf{x}_0) - E_{Y|X}\hat{f}(\mathbf{x}_0))^2$$

notice that the first part of the last expression is fixed and not a random variable.

= bias² + Variance

(c) Show we have exactly the same expression as above:

$$E_{Y,X}(f(\mathbf{x}_0) - \hat{f}(\mathbf{x}_0))^2 = (f(\mathbf{x}_0) - E_{Y,X}\hat{f}(\mathbf{x}_0))^2 + E_{Y,X}(\hat{f}(\mathbf{x}_0) - E_{Y,X}\hat{f}(\mathbf{x}_0))^2$$

What are the parts?

(d) For any random variable $A(\mathbf{X}, \mathbf{Y})$ depending on random vectors \mathbf{X} and \mathbf{Y} ,

$$E_{Y,X}(A(\mathbf{X},Y)) = E_{\mathbf{X}}[E_{Y|\mathbf{X}}(A(\mathbf{X},\mathbf{Y})].$$

Thus show

$$E_{Y,\mathbf{X}}(f(\mathbf{x}_0) - \hat{f}(\mathbf{x}_0))^2 = E_{\mathbf{X}} E_{Y|\mathbf{X}}(f(\mathbf{x}_0) - \hat{f}(\mathbf{x}_0))^2$$
$$= E_{\mathbf{X}}(f(\mathbf{x}_0) - E_{Y|\mathbf{X}} \hat{f}(\mathbf{x}_0))^2 + E_{\mathbf{X}} E_{Y|\mathbf{X}} (\hat{f}(\mathbf{x}_0) - E_{Y|\mathbf{X}} \hat{f}(\mathbf{x}_0))^2$$

This gives an alternative to the expression for the same error in (c) - try to comment on it.