MA 751 M. Kon

Problem Set 3 Due Thurs. 2/17/22

Lectures 6, 7

Reading: Sections 4.1-4.3,

Scheduling: Note there will be no class next Tuesday Feb. 15 (Monday Schedule). We will not need to make adjustments to the discussion sections - the Wednesday discussion section will not be affected, and we will keep the Monday discussion section (now on Tuesday).

Notes: We will start with classification using linear discriminant analysis. Using some natural assumptions this method divides the feature space into regions, each of which corresponds to a unique predicted class. We will then compare it to another method with a similar purpose but very different thinking, logistic regression.

Problems:

1. Hastie, problem 4.2

2. In the discussion of section 4.2, consider a dataset $\{(\mathbf{x}_i, \mathbf{y}_i)\}_{i=1}^{24}$ with 4 categories (k = 1, ..., 4), in which the category \mathbf{y}_i of data point \mathbf{x}_i is $i \mod 4 + 1$ (i.e., the category alternates successively to the next one in the group of 4).

(a) What does the data matrix **Y** look like?

(b) Let \mathbf{y} be the first column of \mathbf{Y} . If we replace the data matrix \mathbf{Y} by \mathbf{y} , show that the vector $\hat{\boldsymbol{\beta}}$ for this standard regression is just the first column of the matrix $\hat{\mathbf{B}}$. (c) Generalize this statement to all columns of $\hat{\mathbf{B}}$.

(d) What does this tell you that the regression using \mathbf{Y} is doing? Can it be interpreted precisely in terms of the individual regressions arising from replacing \mathbf{Y} by one of its columns?

3. Derive equation (4.9)