
Suggestions - Problem Set 3

4.2  (a)  Show the discriminant condition from class or the text takes the form  
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as desired.  We then replace the quantities   by their estimates to get the proper. D3 3ß
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In general vectors/matrices with a ~ on them can represent vectors augmented with 1's
(and in some cases 's).!

Use the usual least squares to justify the best choice for ie.,"ëß
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To calculate the left side of (1), show you can write
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i.e. is the matrix whose first   rows are copies of   , and whose last   rows areM R Rs" #"
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Now use (1), (2), (4) and (5).



(c)  Show that it follows
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Recall the group targets (y-values) on which we have trained the regression are:  
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Show from above that the criterion for class 2 assignment is: 
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Is this the same as the LDA criterion in (a)?   Now assume   - whatR œ R œ RÎ#" #
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