
MA 751    
M. Kon    

Problem Set 4
Due Thurs. 2/24/22

Note that the coming week will have no Tuesday class, and the Monday discussion
section will be held on Tuesday because of the changed schedule.

Lectures 7, 8

Study of neural networks for high dimensional approximation predated machine learning,
and has now been incorporated into the area.  The mathematical models that they provide
are a natural extension of the classes of approximators we have considered.  They are
currently enjoying increased interest in the context of deeper multilayer networks.

Reading:  11.1-11.8, class material

Problems:
1.  Newer activation functions:   Consider a neural network of the type described in
class, with activations x  for the k neurons in the first layer, y  for the m neurons in thei j
second layer, and q for the single neuron in the third layer.  Assume that k = 3, m = 3.
Assume that the activation function has the form H(x) =  tan x + 1/2.1 -1

1

(a) x  Let q = f (x) (with  = (x ,x ,x )) be the function which gives the activation of thes 1 2 3
output neuron q in terms of the input .  Give the general form of f ( ) in terms of thex xs

function H and any appropriate constants (i.e., V , ,w ) determined by the network.(j)
j j)

(b)  Fix values of the above constants to any values you like, and for the values x  = 02
and x  = 1, sketch the output q as a function of x .3 1
(c)  Show that for k = 1 and m fixed, if H(x) = cos x, then for appropriate choices of the
constants the function f (x) can approximate any desired input-output function f(x) ins

L [0, ] to within any accuracy  > 0, (i.e., f( ) - f ( ) ) if m (which can depend2
21 % %² ² sx x

on ) is sufficiently large.  What familiar problem does this reduce to in this case?%

2.  Changing error measures:  Let  be a compact subset.  Suppose that a neuralO © ‘5

network is able to compute a certain class of continuous functions  on  with theU ‘5

property that given any function  (i.e., a continuous function on )0ÐBÑ − GÐOÑ O
together with an , there exists a  such that% U ! 1 −

m0  1m ∞ %, (1)

where for any function ,2

m2m ´ l2Ð ÑlÞ∞
−O

sup
B

B

Now let  be a Borel measure on .  Assuming that  holds as stated above, show that. O (1)
(1) above must still then hold if we replace the  norm with the norm  for anym † m m † m∞ :

" Ÿ :  ∞, where by definition



m2m œ l2Ð Ñl . Þ:
O

:
"Î:Œ 7( B B.( )

For notions involving measures you can refer to the introductory probability lecture (see
course web page). Note also that if  is a real-valued continuous function on a set0Ð ÑB
O § ÐOÑ‘ .5  with finite measure  then 

(
O

∞0Ð Ñ. Ð Ñ Ÿ ll0 ll ÐOÑB B. . .  (1a)

Try proving either for a general measure , or if you like just for the case of standard(1a) .
Lebesgue measure on  (i.e. in 1 dimension).O œ Ò!ß "Ó

3.  Neural networks with more than one output neuron:
 Consider a neural network as developed in class, with k neurons with activations xi
in the first layer, n neurons with activations y  in the second layer, and m neurons withi
activations q  in the third layer.i
 In class we have considered the case m = 1, and Funahashi's theorem stated that it
is possible to approximate any function f( ) = f(x ,x , ,x ):    (whichx 1 2 k

ká Ä‘ ‘
represents the desired output of the single output neuron) with the neural net input-output
(i-o) function

   f ( )  w  H(V  - ),s œ †x x�n

j=1
j j

j ) (2)

where H is a non-constant nondecreasing function, if the constants w , , and a collectionj j)
of vectors V ,V ,  are chosen properly.1 2 á
 To review this, the vector  = (x ,x , ,x ) represented the activation levels ofx 1 2 ká
neurons in the first layer, and q = f(x ,x , ,x ) represented the activation of a 1 2 ká single
neuron in the third layer (i.e., we set m = 1 there).  We assumed that w  representj
connection strengths from each neuron in the second layer to the single neuron in the
third layer, and V  is the vector whose i entry is the connection strenth from neuron x  inj th 

i
the first layer to neuron y  in the second layer.  We showed that the neural net which wej
constructed would, given an input , yield an output q (in the output neuron) given by thex
right side of , which is supposed to be a good approximation of the desired output f( )(2) B
on the left side.
 Show that this result also allows us to generalize to the situation with m neurons
; ßá ß ; À Ä" 7

5 7  in the third layer, where m > 1. That is, given a function  show0 ‘ ‘

the new network (now with  output neurons) can compute a function  such that7 Ð Ñs0 B

ll Ð Ñ  Ð Ñll   !Þ 6 0 Ð Ñ Ð Ñs s s0 B 0 B B 0 B∞ 6% %, for any required As usual, the  component  of 
will be computed by the network as the activation  of the  output neuron. Here for; 66

>2

any function on a set , we will define0 À Ä O §‘ ‘ ‘5 7 5

ll ll ´ l0 Ð Ñlß0 B∞ 6
6 −O

max sup
B

where  is the  component of 0 Ð Ñ 6 Ð ÑÞ6
>2B 0 B



4.  Recall that Funahashi proved that any continuous function on a compact set O § ‘5

can be uniformly approximated by a neural network of the form

0Ð Ñ œ A LÐZ †  Ñßs B B�
5

4 4
4 ) (3)

if  is monotone increasing.  Prove the Corollary to Funahashi's theorem, namely, thatL
functions of the form  are then dense in  for 1 .  Note that given a set(3) P ÐOÑ Ÿ :  ∞:

G G of functions (e.g. continuous functions) and a subset  of these functions (e.g. the setw

of possible neural network functions), the density of the smaller set  in the larger oneGw

G  has been defined in the notes.  How does our approximability within any  of any%
0 − G 0 − G G G by some  prove that  is dense in .w w w

5.  11.3 Problem in Hastie, Tibshirani


