
Suggestions, PS 9

1. (More on RHKS).  Note that we have two Hilbert spaces here.   is the HilbertP ÐJÑ#

space of all square integrable functions, i.e. such that The inner'
J

#0 ÐBÑ.B  ∞Þ

product on  is defined as  Note that the innerP ÐJÑ Ø0ÐBÑß 1ÐBÑÙ œ 0ÐBÑ1ÐBÑ.BÞ#
P ÐJÑ J

# '
product in the smaller subspace  is Also,[ § P ÐJÑ Ø0ÐBÑß 1ÐBÑÙ#

[.   we assume function
0 − ll0 ll œ 0ß 0  ∞[ #iff  .  Note that in general the values of  are assumed to[

#
5  ¡

go to 0, so that convergence of the norm  of the functionll1ll œ + Î[
# #

5
5 5� #
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5 5 59  requires the coefficients   to go to 0 faster than the condition of

finiteness of  .  Consider the example where the functions  are just thell1ll œ +P ÐJÑ
# #

5
5 5#
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Fourier series functions  sin and  cos  on the interval  .5B 5B J œ Ò  ß Ó §1 1 ‘

If we require the coefficients   and   to go to 0 rapidly in the Fourier series+ ,5 5

1ÐBÑ œ + 5B  , 5B 1�
5

5 5 cos sin  , this (as we have shown) will make   smoother.  Thus

the condition that  , i.e., that  , is a smoothing condition1 − ll1ll œ + Î  ∞[ #[
# #
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and essentially requires that our Hilbert space   be a space of smooth functions on the[
same domain   as  .J P ÐJÑ#

Note more generally that the requirement in the Lagrangian that  be small is all1ll[
#

requirement that that  go to 0 faster as , the bigger the 1/  are.  Again this+ 5 Ä ∞5 5#
becomes a smoothness requirement, since the 'unsmooth' parts of  are the components1
with high .5
(a) Again show it is closed under addition, etc., and that the inner product defined
satisfies the right properties.
(b) For    to be an RKHS, the linear functional    must be bounded for any[ 6Ð0Ñ œ 0ÐxÑ
fixed   (see notes).  Show for fixed   we need  (for all  ). Show itx x x   l0Ð 0Ñl Ÿ Gll0 ll[
suffices that
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#Ñ  E  ∞ − J E for all   with some constant .

How can you simplify condition (1)?  Note that if  then�
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Note also the Schwarz inequality  
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Show that then that if 0Ðx xÑ œ - Ð Ñ�
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5 59 , then
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(c) x y x y How about  - does this work?  Explain carefully.  ShowOÐ ß Ñ œ Ð Ñ Ð Ñ�
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that if  then0 œ - Ð Ñ − ß�
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2. (Hastie 5.15)

Problem logic:  The logic of this problem is a bit more general than the previous one.
Here we start with any positive definite function  on all of  (i.e., so  isOÐBß CÑ O‘:

symmetric and positive definite); additionally assume  is continuous, making it aOÐBß CÑ
Mercer kernel.  We can then construct a unique RKHS  of functions based on[ [´ O

this kernel  as was done in the notes (this is done on all of here .ß Ñ‘:

To show that such examples are different than in the last problem consider the case where
OÐBß CÑ œ ÐB † C  "Ñ. O; it can be shown (see problem 5.16) that in this case  is the[
space of all polynomials of degree less than  in, , i.e., a finite dimensional space,. ‘:

unlike the previous RKHS spaces.

Now it can be shown (not done here) that for any positive definite kernel function
OÐBß CÑ ÐBÑ −  !, there are functions  and  such that9 [ #3 3

OÐBß CÑ œ ÐBÑ ÐCÑ�
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Q

3 3 3# 9 9 ;

here  may be either finite or infiinte.  If  then the sum is assumed to convergeQ Q œ ∞
for   (though not necessarily absolutely).  all Bß C − ‘: Similarly, for any function

0 − - ÐBÑ œ 0ÐBÑ B[ 9O 3 3
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, you can assume the sum  converges for all .�
From the proof of Theorem 2 of Lecture 11, the functions  span , i.e., everyOÐ † ß CÑ [O

0 † −( )  can be approximated by finite linear combinations of such functions[O

arbitrarily well. From this show that the functions  must span Ö Ð † Ñ× Þ9 [3 O3œ"
Q

Note all inner products in this problem are in , i.e., .[ [´ Ø+ß ,Ù ´ Ø+ß ,ÙO [O

Additionally, show that the functions  are orthogonal.  Indeed, noteÖ Ð † Ñ×93 3œ"
Q
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so that , where .if 
if Ø ß Ù œ Î œ

! 3 Á 4
" 3 œ 4

9 9 $ # $4 3 34 3 34 œ
You can also assume that | |  for all  and  for some .95ÐBÑ Ÿ Q 5 B − Vß Q  !

(a)  Keep in mind what is the inner product on  (not stated in the text):  if[O

0Ðx xÑß 1Ð Ñ − [O  with  

       0Ðx x x xÑ œ + Ð Ñß 1Ð Ñ œ , Ð Ñß 0 ß 1 œ
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     then    .  
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You can write  

OÐ † B Ñ œ Ö Ð 0Ð † Ñ œ + Ð † Ñà,  ;3 5 5 5 5
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∞ ∞� �# 9 9x3 5Ñ× Ð † Ñ9

how does it follow that holds just using definitions?(a) 
(b)  Use a similar representation to that in (a)
(d)  When is  (   orthogonal (in  ) to   for fixed   (i.e. they have dot3 [ [Þ ÞÑ − OÐ ß x x3 3Ñ
product 0 in the active variable)?  Show  .  How does this affect the Lagrangian3Ðx3Ñ œ !

sum  ?  What happens to  ?�
3œ"

R
#PÐ0Ð ll0 lls sx3 3Ñß C Ñ [

Hastie, problem 5.16

(a) We have a kernel function , which we knowOÐBß CÑ œ ÐB † C  "Ñ œ B C  ".

3œ"

:

3 3

.Š ‹�
is positive definite.  We are also assuming we have a Hilbert space  of fuctions for[
which is a reproducing kernel  and we are given that  consists of allOÐBß CÑ ß [
polynomials of degree  in , i.e. in  variables . Note the form of Ÿ . : B ßá ß B OÐBß CÑ‘:

" :

determines what the inner product of two functions in  is.[ [O ´

Note that this problem refers exclusively to the Hilbert space discussed in this part of the
textbook, namely polynomials of  variables of total degree , whose dimension is: Ÿ .

Q œ :  .ˆ ‰:.
.   (this is the 'choose' function defining the number of combinations of 

objects taken  at a time) you can derive or assume this.. à



We also are given that there are  functions  that form a basis for , suchQ Ö ÐBÑ×9 [7 7œ"
Q

that

OÐBß CÑ œ ÐBÑ ÐCÑà�
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3 3 3# 9 9 (1a)

note that the sum here is finite since our Hilbert space is finite dimensional.

Thus we see that if

2 ÐBÑ œ ÐBÑ7 3 7È# 9 , Ð#Ñ

then

 . OÐBß CÑ œ 2 ÐBÑ2 ÐCÑ�
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7 7

Notice that in the above problems the Hilbert space is all square integrable functions on a
domain, and so is infinite dimensional.  These examples involve only finite dimensional
spaces of polynomials, though they have the same structure.  In particular there is a
unique inner product defined in our Hilbert space though it is finite dimensional.

Using the argument of equation (1), show that

Ø ß Ù œ Î ß9 9 $ #4 3 34 33[   (2a)

where .if 
otherwise$34 œ

" 3 œ 4
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So by (2a) show it follows that  are an orthonormal basis for  (since the2 ÐBÑ ´7 O[ [
97 are orthogonal already).  Of course they are all polynomials since they are all in the
space .[

For this reason the vector  has orthonormal functions asH ÐBÑ œ
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entries.  Since  is a vector of orthonormal functions, it must be true for2ÐBÑ œ
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any two sets of orthonormal vectors that there is an orthogonal matrix relating them, i.e.,

that   Letting , show that relationship (5.62)2 ÐBÑ œ @ ÐBÑÞ Z œ Ð@ Ñ7 78 8 78
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holds.



Note:  the matrix  is necessary because even though we have definedZ

2 ÐBÑ œ ÐBÑ 2 ÐBÑ7 7 77
"Î#
# 9 , in fact we may permute (rearrange) the  and still obtain the

same kernel function .  The matrix  is needed only if there isOÐBß CÑ œ 2 ÐBÑ2 ÐCÑ Z�
7

7 7

such a permutation (i.e. relabeling) of the .  In that case  is a permutation matrix2 Z7

(rearranging components of a vector), which is a orthogonal matrix. However, each 23

basis element must single  be a multiple of a  (though we can permute the labels)94 à
arbitrary linear combinations of  will not work to give  because of the uniqueness of93 32
the form of (1a).

(b) Once we have the basis functions  for the space of polynomials above, we2 ÐBÑ7 [
can transform the problem as in (5.63), into finding 's minimizing the Lagrangian"7
(5.63), which you will want to show is related to the above problem.

Show that if we write , then the Lagrangian in (5.63 is0ÐBÑ œ 2 ÐBÑ Ñ�
7œ"
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where
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using the orthonormality of the functions  to obtain the  term   Thus show the2 ÐBÑ m0m Þ7
#
[

minimizing  will minimize (5.48), i.e. standard regularization problem fitting the dataset0
in , so the solution (as derived in class and in the book) must match that in (5.75), as in[
equation (5.55).  Since the function  is the same for both representations, of course it0ÐBÑ

follows that  is as well (why?).fs

(c) Note that the minimizer of (1a) is , and is also expressible as the0 œ 2 ÐBÑs �
4

4 4"

second term of (5.76) as shown in the text and class, so they must be the same.

(d) Show there are no differences in the case  - namely, the structure of R  Q 0ÐBÑß Os

and (  work the same way.  However, in this case from the viewpoint of ,O  MÑ- " (3)
note that now the problem has a unique least squares solution even if .- œ !


