52

The Three Pillars of Machine Learning
1. Learning Theory

The key to neural network and machine
learning: Learning theory

The role of learning theory has grown a great
deal in:

e Mathematics
e Statistics

53

 Finance

« Computational Biology

 Neurosciences, e.g., theory of plasticity,
workings of visual cortex

54

University of Washington
e Computer science, e.g., vision theory,
graphics, speech synthesis

T. Poggio/MIT

55

People classification or detection:

" y ‘:’.-q-: qn r‘m . ~5 i" — _._ —_| T:‘-.".P- : : l‘ = .l :

l' s S I8 I.-l I:;:'; 3 i - I ["‘I; ':a% } - I?‘L - p g |
.r L. : " : i‘i o |- '-""a J’ - o :f&'- Sl
N f] A - ap o

| 1. 1 7] - ;
ﬂ 7189 patterns

pedestrian

Poggio/MIT

The Problem

What is the theory behind such learning
algorithms?

58

The Problem

2. The problem: Learning theory

Given an unknown function f(x) whose
graph is unknown, learn the function from
examples.

Example 1. X = (z1,29,...,xx)

IS retinal activation pattern

(l.e., 1 = activation level of retinal neuron 1,
etc.), and
y = f(X) > 0 if the retinal pattern is a chair;
y = f(X) < 0 otherwise.

59

The Problem

[Thus: f(x) encodes concept of a chair]

60

The Problem
Given: examples of chairs (and non-chairs):
X1, Xy etc., together with proper outputs
Y1, Y2, €tc. This is the training information.

61

The Problem

Goal: Give best possible estimate of the
unknown function f, i.e., try to learn the
concept f from the above examples.

But: given a few pieces of information about
the graph of f not sufficient: which is the
"right” f(x) given the data points (X, y)
below?

62

The Problem

Example 2. (Here x Is just 1 dimensional)

(@)

63

The Problem

A

64

(b)

[How to decide?]

65

The Problem

Note: there is no unique solution for f(X) -
finding f Is an ill-posed problem.

Hint: a good machine will choose the
simplest f(x) - this is Occam's razor.

66

67

MACHINE LEARNING: BASICS

1. Motivation: machine learning for high
dimensional problems

Computational biology

Example in Computational Biology:
RNA-Seq Machine

68

Computational biology

Process: for each subject tissue sample s,
obtain feature vector

®(s) =X = (21,...,T20,000)
— vector of gene expression levels
E.G., x1 = expression level of gene 1, etc.

Can we classify tissues this way?

69

Computational biology

If this Is an ovarian cancer tissue sample:
Questions:

(a) What type of cancer is it?

(b) What Is prognosis If untreated?

(c) What will be the reaction to standard
chemotherapies?

70

Computational biology

Goals:

1. Differentiate two different but similar
cancers.

2. Differentiate different cancer prognoses or
potential therapies

3. Understand genetic origins and pathways
of the cancer

71

Computational biology

Basic difficulties: few samples to train with
(e.g., 30-200); high dimension (e.g., 5,000
- 100,000).

Curse of dimensionality - too few samples
and too many parameters (dimensions) to
fit them.

Tool: Support vector machine (SVM)

Computational biology

Procedure: look at feature space F' in which
d(s) lives, and separate examples of one
and the other cancer with a hyperplane:

73

Computational biology

e.g. Red vs. Green points represent tissues
that were responsive (green) vs.

74

Computational biology

unresponsive (red) to a particular therapy
T.

75

Computational biology

Train machine: take n = 50 subjects with
different responses to therapy T, and locate
their feature vectors In the space F,
labeling them red (unresponsive) or green
(responsive).

Find separating hyperplane, and use this
plane to separate feature vectors of future
subjects Into 'responsive’ and
'unresponsive'.

76

Computational biology

There are a number of other machine
learning methods (often with non-linear
separating boundaries) that can
discriminate (classify) tissue feature vectors
d(s) this way, with respect to prognosis,
response to therapies, metastatic/non-
metastatic cancer etc.

Such cancer data has often been very

relilable and obtained from TCGA (the
Cancer Genome Atlas) and its iterates.

77

Computational biology

2. The principle: more is more

Past beliefs: too many variables spoll the
statistics; < 50 variables was typical
requirement

Present: more Is better
Machine learning allows massive integration

of information about any object (e.g. a
tissue sample):

78

Computational biology

On a gene level: for any gene in a tissue
sample we get a series of numbers
describing it, from basic measurements and
databases of:

e protein-protein interactions
e CcO-expression (when genes activate
together)
e gene ontology relationships (keywords
referring to given genes in the literature)
e pathway correlations (when genes
appear in the same biological pathways)

79

Computational biology

e epigenetic information (methylation,
phosphorylation levels of genes in DNA)

80

SVM

Machine Learning and Suport Vector
Machines (SVM)

1. Machine learning: SVM

Support vector machine (SVM) is one of the
most well-known machine learning tools.

Some applications of SVM in computational
biology:

81

S\
 Protein binding prediction

WIll protein A bind to protein B?

http://3dsig.weizmann.ac.il/usersfiles/3dsig/abstracts/2004/13.htm|

82

SVM

 Text and topic mining
Does this paper discuss transcription factor
binding to DNA?

83

SVM

PRUO: 3036796
Eyrimidine nuclecside monophosphate kinase hyperactivity in hereditary erfthrocyte pyrimidine §'-nucleotidase deficiency

The pyrimidne nuclsscide triphosphates { CTF , UTE) neveass in tha pyrimidine £ nuclaclidazes PEM dafivkent md bleed wll
(FEQ to a greater degres than do the pyrimidine nuclecside monophosphates (CMP , UMFP) . Pyrmidine nucleoside
mancphosphate (PHMP) kirase phosphorktes CHP and UMP o thek respeetive phosphodiesters | We tested the hypothess that
inweased PHMP kinize adivity contrbutes to the disproportionaie ineesase in CT0 and UTE in the PEM defisent REZ . CHP and
UMF kinaze activities were noreased in high reticubeyta (4.4 +- 2.4 and 2.5 +/- 2.3 mumal'm| RBC per minute) companed 1o
norra |l BEG 2.5 +/- 1.0and 6.0 +~ 2.5 mumoliml REGper minute) . PSM deficent FSC (n = 2) had significantly inweased CHF
and UMF kinase actvities {14 .0and 20,5 mumoliml BEC per minute) . UME and COF - elligiolaimin: were able 0 incease the
activey of CMP kinase in oude hazrmolsate and the acivity of partally purfied enzyme . Sinee the Em for CMP of CMP kinase
was 3 mumoldl in PSM deficent FECand sinee the CHMF concentration & 25-30 mumalil in the FSN deficent REC, the erzyme
shoud be nzark zaturated with CH¥E in the PSRN deficient REC . Thus, PMNMP kinase hyperactivity appears to contbute 1 the
diproportiorate ingzase in CTF and UTFE in the PSM deficient REC .

—Relation 1: Sentence 6

— Kinetic
Consiant: Yalue: Unit:
KM iz mumal/l
—Substances
Enzyme::1 | Sentence::6 Compound::1 | Sentence::6
MNAME:: CWP kinase NAME: CMP

EC:274.14 | Kinetikon;; 2012 KEGG;: 00055 | Einetikon;:2501

—Rexction
o REACTION:ROOS1Z | Kinetikon:Aed | EC:2 74 14 | COMPOUND: CO0055

http://3dsig.weizmann.ac.il/3dsig/2004/abstracts/allabs.html
http://www.informatik.hu-
berlin.de/forschung/gebiete/wbi/research/projects/textmining/k
meddbx.jpg

84

SVM
2. SVM illustration in cancer classification

Example 1. Myeloid vs. Lymphoblastic
leukemias [Golub]

ALL: acute lymphoblastic leukemia
AML: acute myeloblastic leukemia

SVM training: leave one out cross-validation

85

86

SVM 35

Wy 35

L) 35

SVM 23

Wy 23

L) 23

SVM T

Wy T

L) T

SVM 41 1741 127 014 100
Wy 41 41 12T 014 3
L)

Qidl

027

014

S. Mukherjee

fig. 1. Myeloid and Lymphoblastic Leukemia classification by
SVM, along with other discrimination tasks; k-NN is k-nearest

neighbors; WV is weighted voting

arGt rala

SVM

= HEd L

Pl T ' |

e fe TF]
& |ave-ine-Sil sroe
& T BTG madsuned

1] ol 124 e]) =i
sample 5ira

machine with a training set.

87

S. Mukherjee
fig 2: AML vs. ALL error rates with increasing sample size;
Above curves are error rates within test sets after training of

SVM

3. Result: SVM on cancer (Alon, et al.,
PNAS)

Recall: 40 samples colon cancer tissue
22 samples of normal colon tissue (62 total).

For each sample computed

X = (x1,...,2,) = gene expression array

88

Let

D = {(X;, y;) ?21

be collection of samples and correct
classifications:

|1 Ifx; cancerous
Ji=3Y 1 if X; hon-cancerous’

Feature space F'Is 6,500 dimensional (6,500
genes)

89

SVM

Result: using leave one out cross validation
(leave one sample out and train a machine
on the others) obtained:

Misclassification of 6/62 tissues.

90

SVM

4. Example application: handwritten digit
recognition - USPS (Scholkopf, Burges,
Vapnik)

Handwritten digits:

QO ¢ o 0 /¢
VAR ARV AR A §

2 2 2z 2 2
3 3 3 5 3

Y 94 ¥ K 4
S s 4§ 5= &
© é ¢ & C

7 7 7 7 7

s 8 f & s
7 9 9 qQ 9

92

SVM

Training set (sample size). 7300; Test
set: 2000

10 class classifier: each class has a
separating SVM function:
Results:

93

94

polynomial: K (x,y) = ((x - y)/256)d6gree

SVM

degree 1 2 3 4 5 6
raw error/% | 89 | 47| 4.0 | 42| 45| 45
av. #£ of SVs | 282 | 237 | 274 | 321 | 374 | 422
RBF: K(x,y) = exp (—||x — y||*/(256 %))

o? 1.0 0.8] 05| 02| 0.1
raw error/% 471 43| 44| 44| 45
av. # of SVs 234 | 235 | 251 | 366 | 722
sigmoid: K(x,y) = 1.04tanh(2(x -y)/256 — O)

© 09 1.0 1.2 1.3 14
raw error/% 48 | 4.1 43| 44| 48
av. # of SVs 242 | 254 | 278 | 289 | 296

ML and Finance

5. Example: machine learning and
finance

A note on machines and neural networks:

The notion of machine learning includes
neural network architectures.

The vector of inputs to such a network Is

X = (x1,...,x,) and the output (prediction)
IS q.

95

ML and Finance

Thus we are implementing the function

f(xX)=gq

96

ML and Finance

Neural net:

97

ML and Finance

Input: feature vector x = (x1,...,x))
Output: number q.

Training: show the network examples of
known ‘correct’ outputs ¢; based on input
(training) vectors X;:

{(X1,q1), -, (X, qn) }-

Example 2: X; Is a time series of
consecutive daily prices of a given stock,
while ¢; Is a predicted return on the stock

98

ML and Finance

over the day immediately following this time
series.

This machine is a neural network trained with
weights (parameters) that transform input
vector X = (zy,...,x,) entering on the left
layer into a single ouptut number
q = f(X) = predicted stock price formed on
the right.

99

ML and Finance

Other Machine Learning methods are really
generalized versions of the above input-
output network.

100

ML and Finance

Input: feature vector
X = (T1,...,%p)

desired ouptut: ¢ = predicted stock price.

101

ML and Finance

6. The simplest machine: linear
regression

Example: Let's build a regression machine to
predict stock price from time series.

Training data:

{(X1,q1); -+, (Xn,qn) }-

102

ML and Finance

Machine will find a rule that takes prior prices
x; to today's predicted price q :

X = (T1,...,%p) — q.

103

ML and Finance

Regression machine:

o - o

q=01z1+ ... + 06z, + 0o =qg=08-X+ 5o

104

ML and Finance

How do we train the machine? Find
coefficients fy, ..., 3, from ordinary

regression based on the training data set

{(X1,q1)5 -+, (XN, qn) }-

105

ML and Finance

!

. Logistic Regression
{large scale)

Support Vector Machine

Decision Tree

Neural netwaork (perceptron) Neural Network

»
1960 1970 1980 1990 2000 2010 Year

http://www.aboutdm.com

106

ML Pillars

The Three Pillars of Machine Learning:

1. The world can be injected into any
computer using feature vectors - any
object can be summarized as a string of
numbers. Example -

107

ML Pillars

This object (a face) can be converted to a
feature vector (numbers) in different ways:

(a) for example a face is just 10° numbers
(photograph pixel intensities).

108

ML Pillars

(b) or a face is a list of distances between the
primary facial features (e.g. eye, ears, lip
corners), or (better) distance ratios.

Main point. feature vectors are the language

of learning machines - objects are now
strings of numbers.

109

ML Pillars

(2) Geometrization of data: a n-
dimensional feature vector Is a string of
numbers that become coordinates in an n
more dimensional space (feature space).

Thus objects to be classified become
geometric points In a space.

ldentifying an object becomes identifying its
location In feature space:

110

ML Pillars

111

Kernel Trick

(3) Kernel trick: Sometimes feature vectors
are large (e.g. 10° numbers = 10°
dimensional space). Keeping track of 10°
numbers for each example - too much!

Computers will protest ... curse of
dimensionality!

Trick: fix the data matrix:

112

Kernel Trick

Example 3: N independent company daily
price histories z,, ..., z, followed by a

predicted price g after x,,.

Features Outcome
Companyl |z |z2 | 23| ... | ZTp | q
Company 2 |z |x2 |23 | ... | Tp | ¢

Company N |z | x2 | x3 | ... | Tp | ¢

113

Kernel Trick

features = p = dimensions
samples = N

Often p >> N (l.e., very high frequency price
samples can have more time slices £ than
sample companies N)

= (Curse of dimensionality)

114

Kernel Trick

115

Data matrix:

X = k rows

L1
L1
L1

L1

L9
L9
L9

L9

N columns

X3
X3
X3

X3

Kernel Trick

L1 X1 I L1
Lo Xy I9 L2
3 X3 X X
XT _ . 3 3
Lp Tp Lp Lp
4 q q q

Then: usually use the final matrix to be the
covariance matrix

116

Kernel Trick
X! . X

[note this is p x p = huge matrix!]

Now use the kernel matrix
X - X!

[now this Is an NV x N matrix - can be much
smaller!]

But both the large and the small matrix
encode exactly the same information!

117

Kernel Trick

Thus high dimensional problem (k x k)
becomes low dimensional problem (N x N)

— Kernel trick!

118

/. Example (continued): Machine
Learning and Stock Trading:

=~

A ! .

p
/
f e T g SR -
X WA A
AN S :
7 N =

: - -) o T
. h ’I

https://blogs.msdn.microsoft.com/meechao/2017/01/19/building-
an-experimental-stock-trading-system-using-machine-learning-
and-python/

119

HIGH FREQUENCY TRADING USING ML:

For a specific company (say IBM), train a
machine to predict return y (percentage
change in stock value) in the next
millisecond based on the pattern of stock
values over the last p milliseconds,

(5131, ,lep).

That Is, find a machine M to implement the
best approximate map

120

Yy = fu(x1,...,2p).

High frequency methods are well developed
(sometimes not publicized).

121

FUNAMENTALS (LOW FREQUENCY)
TRADING USING ML:

Also important:

Try a feature vector
X = (T1,...,Tp).

where z, x5, ... are:

e company fundamental numbers (say month
to month or quarterly)

122

e US Economic indicators (leading economic
Indicators, interest rates, etc.)

e Sentiment indicators (possibly only low
frequency updates)

123

Main point:

Fundamentals dominate low frequency
trading;

Psychology/game theory dominate high
frequency trading.

Machine learning can be used in both!

Low Frequency Trading
More about low frequency trading

e Focus on low frequency trading by
identifying by predicting price from slowly
changing fundamental performance
indicators (zy,...,x))

Low Frequency Trading

¢ Lots (hundreds) of performance indicators
x; (e.g. taxes, operating income etc.) are
available for thousands of companies.

e ML technigues can explore and combine
large numbers of Indicators z; to identify
extreme performers (likely to have very
high earnings or large losses).

Low Frequency Trading

e Each stock at any time Is now a point in a
high-dimensional space (one dimension per
performance indicator). Can have hundreds
or thousands of indicators z;.

e Goal Is always the same: use indicators
(x1,...,x,) to predict return y in the next
time period

e One can use an ensemble of ML methods
not just Support Vector Machines.

Low Frequency Trading

Low Frequency Trading

Note: If only two classes A and B are to be
predicted, there are many ways to choose
the separator between class A (good
companies, blue) and class B (not good
companies, red) when they are placed in
the feature space F..

e If over-fitting occurs, performance on the
test set will be poor; 1.e. there is little
predictive value.

o
-
S
©
| -
T
>
O
c
D
=
o
D
| -
LL
=
@
—

Low Frequency Trading

¢ Solution: numerous highly technical
approaches can be implemented to prevent
overfitting

e Most important rule of thumb: keep your
separator simple!

©
O
-
©
=
LS
O
=
)
al

Thirty years

Sample portfolios

Portfolio

O

Long
—#— Select Short,

™

=Dustin-Ad] |

%~ Long+Short |

=
L]

S —5&P500

5n Ok

z i}

1994-2013

Extensions

Sentiment Analysis is a New Application

Machine learning tools for predicting a
company stock may be extended to include
news items (textual analysis of
newspapers), analyst rankings of
companies, and company sentiments from
social networks (twitter, stocktwit, facebook,
G+)

Self-Driving Ubers

8. The latest machines

e Self-driving Ubers:

Self-Driving Ubers

How a Car Drives Itself

LIDAR UNIT ~—— CAMERAS
Constantly spinning. it uses laser beams to Uses parallax from multiple images to find the
generate a 360-degree image of the car’s | distance to various objects. Cameras also detect
surroundings. traffic lights and signs, and help recognize
A moving objects like pedestrians and bicyclists.
RADAR SENSORS P -
X {
Measure the distance from B :-;.‘_r-‘..
the car to obstacles. _— e,
/ ——
. 2 Y
7 | al
ADDITIONAL)" I ————— . | MAIN COMPUTER
LIDAR UNITS /! : . Y 7 — = ‘l. (LOCATED IN TRUNK)
" ' = / "\\, f:\' Analyzes cata from the
() [\ f ' J $ensors, and compares
W - — —ﬁl ‘I its stored maps to assess
\ _ 3 y — | current conditions.

By Gulibert Gates | Source: Google | Note: Car is a Lexus model modifed by Google

Self-Driving Ubers

|dealization of input-output:

feature vector X = (zy,...,x),)

For example:

r1 = distance to nearest obstacle in the front
of car (0 degrees from front direction)

xr9 = distance to nearest obstacle 10 degrees
from front direction.

Self-Driving Ubers

xr3 = distance to nearest obstacle 20 degrees
from front direction.
Etc.

Self-Driving Ubers

Another possible feature vector

Yy = (Y1, ¥p)

11 = direction of motion of object at x;
1o = direction of motion of object at z
y3 = direction of motion of object at x5

Self-Driving Ubers

or
Z=(21,...,2p)

z1 = speed of motion of object at x;
29 = speed of motion of object at x5

Etc.

low to combine information In feature
vectors?

Self-Driving Ubers

Super-feature vector
V= (Z1, ey Tp YLy ey Ypi Zly-eey Zpeeees)

[a very large vector containing all numbers
the machine might be interested In]

Self-Driving Ubers

OR: Use the kernel trick: use a kernel
function K;(x,x?)) where x() and x(?
are independent copies of x (vector of
object distances).

Now form another kernel function
Ky(yW,y@)) where y), y?) are
Independent copies of variable y (vector of
object directions).

Etc.

Self-Driving Ubers

Training (the car machine)

Example of training:

Now take lots of example measured values of
high dimensional super-vectors v in many
different situations:

Desired machine output for input v:

£(v) > (0 If brakes should be applied
< 0 If brakes should not be applied

Self-Driving Ubers

For SVM machine, if v Is the current
measured super-vector, then there Is an
appropriate kernel function K (v!), v()
defined on independent copies vV, v(?) of
the super-vector v, such that

ZCL@ -|- a.

Self-Driving Ubers

Note this gives a curved (non-plane)
separation between the two regions,
f(v) >0and f(v) <0,

.e., the separationis f(v) = 0.

Self-Driving Ubers

The coefficients a; can be obtained using a
linear algebra algorithm from the k£ x k
kernel matrix K with entries

Self-Driving Ubers

The good news: If we have already derived a
good kernel matrix K, for the x variables,

K, for the y variables, K, for the z
variables, etc., then the correct full kernel
matrix incorporating all of this information is
the sum matrix

K=K, +K, +K, +...
Integrating all of the variables x, y, z

automatically.
Again the utility of the kernel trick!

Self-Driving Ubers

More about the kernel trick: Can we use
just any function K (v,w) above?

Almost - the function K (v,w) must be
positive definite, i.e., If take any fixed set of

measured super-vectors v ... v(¥) the
kernel matrix

IS positive definite, I.e. has only non-
negative eigenvalues.

Self-Driving Ubers

Lots of functions work though. For example

K(v,w)=v-w (linear kernel)

K(v,w) = e V""" (Gaussian kernel) with
width o

K(v,w) = (1+v-w)? (polynomial kernel)

See:

Self-Driving Ubers

More generally: can let
K(v,w) = (v)®(w) (1)

for any continuous function ¢: R — R"
(m = dimension of v)

Can show: using this kernel K in (1) Is
equivalent to mapping all feature vectors v
that we encounter into ®(v) in all ML
operations.

Self-Driving Ubers

After this mapping just use the simple linear
kernel function K(v,w) = v -w (the one that
gives a linear boundary between the two
categories), but always replacingv — &(v)
and w — ®(w) before starting the
calculation.

Self-Driving Ubers

® Is called a feature map.

When is a feature map useful? When a
linear separation does not work between
the blue and red dots:

See:

https://www.youtube.com/watch?v=3lICbRZP
rZA

Deep Networks

e Deep neural networks:

Replace single middle (hidden) layer of
neurons by 3 or more hidden layers.

Deep Networks
hidden layer 1 hidden layer 2 hidden layer 3

input layer

"=

-
27
SAROEST P
N o ST
RN e JA
RN AT T g
- AR PRl
SRS A
RO RO
el N el R
A
:
-

2, R e b M e
e ll g v YN S W ey
AL AT CRAM RS LT B AT
F N @ T OIS
P RIS L2 RO
2o\ ;;’;}aﬁ@;:o&\
:__:;’”L A\t}r .:};5”‘.. A‘:t'-

= *"%.

Input layer has neural activations that form a
vector X :

X = (T1,...,%)p)
Hidden layer 1 activations:

Y = (Y15 Yn)
Hidden layer 2 activations:

Z — (21,...,Zn)

Deep Networks

Final (output) layer activations:

d=1(q1,---qn)-

Feedforward function from x to y Is almost a
linear map:

y =W -X,

where matrix entries

w;; = W;; = connection strength from neuron
z; t0 neuron y;

Deep Networks

Almost: now apply a sigmoid function

1

¢(y) = 17 that for each component y of y

looks like

Deep Networks

1
0.9k
0.8}
0.7F
0.6
0.5F
0.4f
0.3F
0.2+
0.1F

O i
-10 -5 0 5 10

Note ¢ Is bounded to prevent your neurons y;
from burning out. Thus we actually have:

Deep Networks

y = ¢(W-Xx).
Now repeat same map fromy to z :
z=o¢(V-Yy),

where V Is now matrix of weights from y
layer to z layer, etc.

Each layer encodes more abstract
Information about the input information X
(image with pixel intensites ;).

Deep Networks

Finally, the output layer (with enough layers)
tells you whether the painting you showed
to the first layer x is a Da Vinci or not.

Deep Networks

Image credit: Musée du Louvre

The trick: you need lots of layers.

Deep Networks

X (first) layer encodes visual pixels of painting

y (second) layer encodes directionalities of
edges at nearby pixels

Z (third) layer encodes presence of shapes

(circles, triangles) at nearby pixels.

Each successive layer encodes higher levels
of abstract information.

Deep Networks

g (last) layer encodes identity of the painter

(after sufficient training of your network
machine!).

Who knew that iterated maps (applying
matrix multiplications and the sigmoid
function ¢ repeatedly to get from input x to
output g) had such power!

Yin and Yang

Final remark

Just as standard computers can emulate our
ability to perform precise calculational tasks
(and even linguistic tasks)

Machine learning (e.g. in a neural network or
SVM or elsewhere) emulates our intuition.

Yin and Yang

Intuition Is what takes an input situation
consisting of feature vectors x,vy, z
representing our Uber car's current

environment and then tells it what to do
next.

Intuition will also be emulated by computers,
using machine learning -- already our
precise calculational abilities have been
emulated (very well!) by standard
computers.

Yin and Yang

Precise
Calculation

Intuition

The combination of precise calculation and
Intuitive thinking are the yin and yang of our
thinking, and will also be the yin and yang
of the thinking of future Artificial
Intelligences.

Yin and Yang

https://medium.com/fluxx-studio-notes/ai-virtual-assistants-and-chat-bots-before-
now-and-in-the-future-df979529ad5f

