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The Three Pillars of Machine Learning

1.  Learning Theory

The key to neural network and machine
learning:  Learning theory

The role of learning theory has grown a great
deal in:

 •  Mathematics
 •  Statistics
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 • Finance
 •  Computational Biology 
 •  Neurosciences, e.g., theory of plasticity,
     workings of visual cortex
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    University of Washington 

 •  Computer science, e.g., vision theory,
    graphics, speech synthesis
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        T. Poggio/MIT
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  Face identification:

              MIT
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  People classification or detection:

         Poggio/MIT
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What is the theory behind such learning
algorithms?
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2.  The problem:  Learning theory

Given an unknown function  whose0Ð Ñx
graph is unknown, learn the function from
examples.

Example 1:  x œ ÐB ß B ßá ß B Ñ" # 5

is retinal activation pattern
(i.e., activation level of retinal neuron ,B œ ""

etc.), and
    if the retinal pattern is a chair;C œ 0Ð Ñ  !x
C œ 0Ð Ñ  !x  otherwise.
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[Thus:  encodes concept of a chair]0Ð Ñx
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Given:  examples of chairs (and non-chairs):
x x" #ß  etc., together with proper outputs
C ß C ß" # etc. This is the .training information
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Goal:  Give best possible estimate of the
unknown function , i.e., try to learn the0
concept  from the above examples.0

But:  given a few pieces of information about
the graph of  not sufficient:  which is the0
"right"  given the data points 0Ð Ñ Ð ß CÑx x
below?
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Example 2:  (Here  is just 1 dimensional)x

(a)
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(b)

[How to decide?]
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Note: there is no unique solution for  -0Ð Ñx
finding  is an 0 ill-posed problem.

Hint:  a good machine will choose the
simplest 0ÐBÑ - this is Occam's razor.
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MACHINE LEARNING:  BASICS

1.  Motivation:  machine learning for high
dimensional problems
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Example in Computational Biology:
 RNA-Seq Machine
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Process:  for each subject tissue sample ,=
obtain feature vector

FÐ=Ñ œ œ ÐB ßá ß B Ñx " #!ß!!!

œ vector of gene expression levels

E.G., expression level of gene 1, etc.B œ"

Can we classify tissues this way?
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If this is an ovarian cancer tissue sample:

Questions:

(a) What type of cancer is it? 

(b)  What is prognosis if untreated?

(c)  What will be the reaction to standard
chemotherapies?
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Goals:

1. Differentiate two different but similar
cancers.

2.  Differentiate different cancer prognoses or
potential therapies

3.  Understand genetic origins and pathways
of the cancer
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Basic difficulties:  few samples to train with
(e.g., 30-200);  high dimension (e.g., 5,000
- 100,000).

Curse of dimensionality - too few samples
and too many parameters (dimensions) to
fit them.

Tool:  Support vector machine (SVM)
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Procedure: look at feature space  in whichJ
FÐ=Ñ lives, and separate examples of one
and the other cancer with a hyperplane:
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e.g.  Red vs. Green points represent tissues
that were responsive (green) vs.
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unresponsive (red) to a particular therapy
T.
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Train machine:  take  subjects with8 œ &!
different responses to therapy , and locateT
their feature vectors in the space ,J
labeling them red (unresponsive) or green
(responsive).

Find separating hyperplane, and use this
plane to separate feature vectors of future
subjects into 'responsive' and
'unresponsive'.
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There are a number of other machine
learning methods (often with non-linear
separating boundaries) that can
discriminate (classify) tissue feature vectors
FÐ=Ñ this way, with respect to prognosis,
response to therapies, metastatic/non-
metastatic cancer etc.

Such cancer data has often been very
reliable and obtained from TCGA (the
Cancer Genome Atlas) and its iterates.



Computational biology

78

2. The principle:  more is more

Past beliefs:  too many variables spoil the
statistics;  < 50 variables was typical
requirement

Present:  more is better

Machine learning allows massive integration
of information about any object (e.g. a
tissue sample):
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On a gene level: for any gene in a tissue
sample we get a series of numbers
describing it, from basic measurements and
databases of:

  protein-protein interactionsì
  co-expression (when genes activateì
          together)
  gene ontology relationships (keywordsì
        referring to given genes in the literature)
  pathway correlations (when genesì
  appear in the same biological pathways)
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  epigenetic information (methylation,ì
  phosphorylation levels of genes in DNA)



SVM
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Machine Learning and Suport Vector
Machines (SVM)

1.  Machine learning:   SVM

Support vector machine (SVM) is one of the
most well-known machine learning tools.

Some applications of SVM in computational
biology:
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 •  Protein binding prediction

  Will protein  bind to protein ?E F

 
http://3dsig.weizmann.ac.il/usersfiles/3dsig/abstracts/2004/13.html
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 •  Text and topic mining
Does this paper discuss transcription factor

binding to DNA?



SVM
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http://3dsig.weizmann.ac.il/3dsig/2004/abstracts/allabs.html
http://www.informatik.hu-

berlin.de/forschung/gebiete/wbi/research/projects/textmining/k
meddbx.jpg
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2.  SVM illustration in cancer classification

Example 1:  Myeloid vs. Lymphoblastic
leukemias [Golub]

ALL:  acute lymphoblastic leukemia
AML:  acute myeloblastic leukemia

SVM training:  leave one out cross-validation
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S. Mukherjee
fig. 1:  Myeloid and Lymphoblastic Leukemia classification by
SVM, along with other discrimination tasks; k-NN is -nearest5

neighbors; WV is weighted voting
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S. Mukherjee
fig 2:  AML vs. ALL error rates with increasing sample size;

Above curves are error rates within test sets after training of
machine with a training set.
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3 Result:  SVM on cancer (Alon, et al.,Þ
PNAS)

Recall: 40 samples colon cancer tissue
22 samples of normal colon tissue (62 total).

For each sample computed

x œ ÐB ßá ß B Ñ œ" : gene expression array
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Let

H œ ÖÐ ß C Ñ×x3 3 3œ"
'#

be collection of samples and correct
classifications:

C œ
"
"3

3

3
œ if  cancerous

if  non-cancerous.x
x

Feature space  is 6,500 dimensional (6,500J
genes)
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Result:  using leave one out cross validation
(leave one sample out and train a machine
on the others) obtained:

Misclassification of 6/62 tissues.
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4.  Example application:  handwritten digit
recognition - USPS (Scholkopf, Burges,
Vapnik)

Handwritten digits:
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Training set (sample size):  7300;       Test
set:   2000

10 class classifier; each class has a
separating SVM function:

Results:



SVM

94



ML and Finance

95

5.  Example:  machine learning and
finance

A note on machines and neural networks:

The notion of machine learning includes
neural network architectures.

The vector of inputs to such a network is
x œ ÐB ßá ß B Ñ" :  and the output (prediction)
is .;
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Thus we are implementing the function
0Ð Ñ œ ;x .
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Neural net:
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Input: feature vector x œ ÐB ßá ß B Ñ" :

Output: number .;

Training:  show the network examples of
known 'correct' outputs  based on input;3
(training) vectors :x3

ÖÐ ß ; Ñßá ß Ð ß ; Ñ×x x" " R R .

Example 2:   is a time series ofx"

consecutive daily prices of a given stock,
while  is a predicted return on the stock;"
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over the day immediately following this time
series.

This machine is a neural network trained with
weights (parameters) that transform input
vector  entering on the leftx œ ÐB ßá ß B Ñ" :

layer into a single ouptut number
; œ 0Ð Ñ œx predicted stock price formed on
the right.
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Other Machine Learning methods are really
generalized versions of the above input-
output network.
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Input:  feature vector

x œ ÐB ßá ß B Ñ" :

desired ouptut:  predicted stock price.; œ
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6.  The simplest machine: linear
regression

Example:  Let's build a regression machine to
predict stock price from time series.

Training data:

ÖÐ ß ; Ñßá ß Ð ß ; Ñ×x x" " R R .
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Machine will find a rule that takes prior prices
B ; À3 to today's predicted price 

x œ ÐB ßá ß B Ñ Ä ;Þ" :
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Regression machine:

; œ B á  B  œ ; œ " " " "" " : : ! !" † x
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How do we train the machine?  Find
coefficients  from ordinary" "! :ßá ß
regression based on the training data set

ÖÐ ß ; Ñßá ß Ð ß ; Ñ×x x" " R R .
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http://www.aboutdm.com
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The Three Pillars of Machine Learning:

1.  The world can be injected into any
computer using feature vectors - any
object can be summarized as a string of
numbers.  Example -
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This object (a face) can be converted to a
feature vector (numbers) in different ways:

(a)  for example a face is just 10  numbers'

(photograph pixel intensities).
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(b) or a face is a list of distances between the
primary facial features (e.g. eye, ears, lip
corners), or (better) distance ratios.

Main point:  feature vectors are the language
of learning machines - objects are now
strings of numbers.
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(2)  :  a -Geometrization of data 8
dimensional feature vector is a string of
numbers that become coordinates in an 8
more dimensional space (feature space).

Thus objects to be classified become
geometric points in a space.

Identifying an object becomes identifying its
location in feature space:
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(3)  :  Sometimes feature vectorsKernel trick
are large (e.g. 10  numbers = 10' '

dimensional space).  Keeping track of 10'

numbers for each example - too much!

Computers will protest ... curse of
dimensionality!

Trick:  fix the data matrix:
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Example 3:  independent company dailyR
price histories  followed by aB ßá ß B" :

predicted price  after .; B:

Features Outcome
Company 1
Company 2
 
Company 

B B B ÞÞÞ B ;

B B B ÞÞÞ B ;

ã ã ã
R B B B ÞÞÞ B ;

" # $ :

" # $ :

" # $ :



Kernel Trick

114

# features  dimensionsœ : œ
# samples œ R

Often  >>  (i.e., very high frequency price: R
samples can have more time slices  than5
sample companies )R

Ê Ð ÑCurse of dimensionality
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Data matrix:

X œ 5

B B B á B ;
B B B á B ;
B B B á B ;
ã ã ä
B B B á B ;

 rows  

ðóóóóóóóóóóóóóóóóñóóóóóóóóóóóóóóóóò

ÚÝÝÝÝÛÖ ÙÝÝÝÝÜ

Ô ×Ö ÙÖ ÙÖ Ù
Õ Ø

" # $ :

" # $ :

" # $ :

" # $ :

                    R  columns
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XX

" " " "

# # # #

$ $ $ $

: : : :

œ

B B B á B
B B B á B
B B B á B
ã ã ä
B B B á B
; ; ; á ;

Ô ×Ö ÙÖ ÙÖ ÙÖ ÙÖ ÙÖ Ù
Õ Ø

Then: usually use the final matrix to be the
covariance matrix
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X XX †

[note this is  = ]: ‚ : huge matrix!

Now use the kernel matrix

X X† X

[now this is an  matrix - can be muchR ‚R
smaller!]

But both the large and the small matrix
encode exactly the same information!
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Thus high dimensional problem ( )5 ‚ 5
becomes low dimensional problem ( )R ‚R

Ä  Kernel trick!
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7.  Example (continued):  Machine
  Learning  and Stock Trading:

https://blogs.msdn.microsoft.com/meechao/2017/01/19/building-
an-experimental-stock-trading-system-using-machine-learning-

and-python/
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HIGH FREQUENCY TRADING USING ML:

For a specific company (say IBM), train a
machine to predict return  (percentageC
change in stock value) in the next
millisecond based on the pattern of stock
values over the last  milliseconds,:
ÐB ßá ß B Ñ" : .

That is, find a machine  to implement theQ
best approximate map
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C œ 0 ÐB ßá ß B ÑQ " : .

High frequency methods are well developed
(sometimes not publicized).
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FUNAMENTALS (LOW FREQUENCY)
TRADING USING ML:

Also important:

Try a feature vector

x œ ÐB ßá ß B Ñ" : .

where  are:B ß B ßá" #

ì company fundamental numbers (say month
to month or quarterly)
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ì US Economic indicators (leading economic
indicators, interest rates, etc.)

ì Sentiment indicators (possibly only low
frequency updates)
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Main point:

Fundamentals dominate low frequency
trading;

Psychology/game theory dominate high
frequency trading.

Machine learning can be used in both!



Low Frequency Trading
More about low frequency trading

ì  Focus on low frequency trading by
identifying by predicting price from slowly
changing fundamental performance
indicators ÐB ßá ß B Ñ" :



Low Frequency Trading
ì Lots (hundreds) of performance indicators
B3 (e.g. taxes, operating income etc.) are
available for thousands of companies.

ì ML techniques can explore and combine
large numbers of  indicators  to identifyB3

extreme performers (likely to have very
high earnings or large losses).



Low Frequency Trading

ì Each stock at any time is now a point in a
high-dimensional space (one dimension per
performance indicator). Can have hundreds
or thousands of indicators .B3

ì Goal is always the same: use indicators
ÐB ßá ß B Ñ C" :  to predict return  in the next
time period

ì One can use an ensemble of ML methods
not just Support Vector Machines.



Low Frequency Trading

    



Low Frequency Trading
Note: If only two classes  and  are to beE F

predicted, there are many ways to choose
the separator between class A (good
companies, ) and class B (not goodblue
companies, ) when they are placed inred
the feature space .J

ì If over-fitting occurs, performance on the
test set will be poor; i.e. there is little
predictive value.



Low Frequency Trading



Low Frequency Trading
ì Solution: numerous highly technical

approaches can be implemented to prevent
overfitting

ì Most important rule of thumb:  keep your
separator simple!



Performance
Sample portfolios:  Thirty years

1994-2013



Extensions
Sentiment Analysis is a New Application

Machine learning tools for predicting a
company stock may be extended to include
news items (textual analysis of
newspapers), analyst rankings of
companies, and company sentiments from
social networks (twitter, stocktwit, facebook,
G+)



Self-Driving Ubers
8.  The latest machines

ì  Self-driving Ubers:



Self-Driving Ubers



Self-Driving Ubers
Idealization of input-output:

feature vector x œ ÐB ßá ß B Ñ" :

For example:

B œ" distance to nearest obstacle in the front
of car (  degrees from front direction)!

B œ# distance to nearest obstacle 10 degrees
from front direction.



Self-Driving Ubers
B œ$ distance to nearest obstacle 20 degrees

from front direction.
Etc.



Self-Driving Ubers
Another possible feature vector

y œ ÐC ßá ß C Ñ" :

C œ B" "direction of motion of object at 
C œ B# #direction of motion of object at 
C œ B$ $direction of motion of object at 

Etc.



Self-Driving Ubers
or

z œ ÐD ßá ß D Ñ" :

D œ B" "speed of motion of object at 
D œ B# #speed of motion of object at 

Etc.

How to combine information in feature
vectors?



Self-Driving Ubers
Super-feature vector

v œ ÐB ßá ß B à C ßá ß C à D ßá ß D ÞÞÞÞÞÑ" : " : " :

[a very large vector containing all numbers
the machine might be interested in]



Self-Driving Ubers
OR:  Use the kernel trick:   use a kernel

function  where  and O Ð ß Ñ"
Ð"Ñ Ð#Ñ Ð"Ñ Ð#Ñx x x x

are independent copies of (vector ofx 
object distances).

Now form another kernel function
O Ð ß Ñ#

Ð"Ñ Ð#Ñ Ð"Ñ Ð#Ñy y y y where ,  are
independent copies of variable (vector ofy 
object directions).

Etc.



Self-Driving Ubers
Training (the car machine)

Example of training:
Now take lots of example measured values of

high dimensional super-vectors in manyv 
different situations:

v v vÐ"Ñ Ð#Ñ ÐRÑß ßá ß Þ

Desired machine output for input :v

0Ð Ñ
 !
Ÿ !

v œ if brakes should be applied
if brakes should not be applied



Self-Driving Ubers

For SVM machine, if  is the currentv
measured super-vector, then there is an
appropriate kernel function OÐ ß Ñv vÐ"Ñ Ð#Ñ

defined on independent copies  ofv vÐ"Ñ Ð#Ñß
the super-vector , such thatv

0Ð Ñ œ + OÐ ß Ñ  + Þv v v�
3œ"

R

3 !
ÐRÑ



Self-Driving Ubers
Note this gives a curved (non-plane)

separation between the two regions,
0Ð Ñ  ! 0Ð Ñ Ÿ !v v and ,

i.e., the separation is .0Ð Ñ œ !v



Self-Driving Ubers
The coefficients  can be obtained using a+3

linear algebra algorithm from the 5 ‚ 5
kernel matrix K with entries

K v v34
Ð3Ñ Ð4Ñœ OÐ ß Ñ

Ð3ß 4 œ "ßá ßRÑÞ



Self-Driving Ubers
The good news:  if we have already derived a

good kernel matrix  for the  variables,K xx

K y K  zy z for the  variables, for the 
variables, etc., then the  full kernelcorrect
matrix incorporating all of this information is
the sum matrix

K K K Kœ x y z  á

integrating all of the variables , x y zß
automatically.

Again the utility of the kernel trick!



Self-Driving Ubers
More about the kernel trick:  Can we use

just any function  above?OÐ ß Ñv w

Almost - the function  must beOÐ ß Ñv w
positive definite, i.e., if take any fixed set of
measured super-vectors , , thev vÐ"Ñ Ð5Ñá ß
kernel matrix

K v v34
Ð3Ñ Ð4Ñœ OÐ ß Ñ

is positive definite, i.e. has only non-
negative eigenvalues.



Self-Driving Ubers
Lots of functions work though.  For example

OÐ ß Ñ œ †v w v w  (linear kernel)
OÐ ß Ñ œ /v w l  l Îv w # #5  (Gaussian kernel) with   
          width 5
OÐ ß Ñ œ Ð"  † Ñv w v w .  (polynomial kernel)

See:



Self-Driving Ubers
More generally: can let

OÐ ß Ñ œ Ð Ñ Ð Ñv w v wF F  (1)

for any continuous function : F ‘ ‘7 8Ä
    ( dimension of 7 œ Ñv

Can show:  using this kernel  in (1) isO
equivalent to mapping  feature vectors all v
that we encounter into  in MLFÐ Ñv all 
operations.



Self-Driving Ubers
After this mapping just use the simple linear

kernel function (the one thatOÐ Ñ œ †v w v w ,
gives a linear boundary between the two
categories), but always replacing v vÄ FÐ Ñ
and w wÄ FÐ Ñ before starting the
calculation.



Self-Driving Ubers
F is called a feature map.

When is a feature map useful?  When a
linear separation does not work between
the blue and red dots:

See:

https://www.youtube.com/watch?v=3liCbRZP
rZA



Deep Networks
ì  Deep neural networks:

Replace single middle (hidden) layer of
neurons by 3 or more hidden layers.



Deep Networks

Input layer has neural activations that form a
vector x À



Deep Networks

x œ ÐB ßá ß B Ñ" :

Hidden layer 1 activations:

y œ ÐC ßá ß C Ñ" 8

Hidden layer 2 activations:

z œ ÐD ßá ß D Ñ" 8

ã



Deep Networks
Final (output) layer activations:

q œ Ð; ßá ß ; Ñ" 8 .

Feedforward function from  to is ax y almost 
linear map:

y W xœ † ,

where matrix entries

A œ34 34W œ connection strength from neuron
  to neuron B C3 4



Deep Networks
Almost: now apply a functionsigmoid 
9ÐCÑ œ C"

"/B  that for each component  of y
looks like



Deep Networks

.

Note  is bounded to prevent your neurons 9 C3
from burning out.  Thus we actually have:



Deep Networks

y W xœ Ð Ñ9 † .

Now repeat same map from  to y z À

z ,œ Ð † Ñ9 V y

where is now matrix of weights from  V y
layer to layer, etc.z 

Each layer encodes more abstract
information about the input information x
(image with pixel intensites B ÑÞ3



Deep Networks
Finally, the output layer (with enough layers)

tells you whether the painting you showed
to the first layer  is a Da Vinci or not.x



Deep Networks

The trick: you need lots of layers.



Deep Networks

x (first) layer encodes visual pixels of painting 

y (second) layer encodes directionalities of
edges at nearby pixels

z (third) layer encodes presence of shapes
(circles, triangles) at nearby pixels.

ã

Each successive layer encodes higher levels
of abstract information.



Deep Networks

ã

q (last) layer encodes identity of the painter

(after sufficient training of your network
machine!).

Who knew that iterated maps (applying
matrix multiplications and the sigmoid
function  repeatedly to get from input  to9 x
output ) had such power!q 



Yin and Yang

Final remark

Just as standard computers can emulate our
ability to perform precise calculational tasks
(and even linguistic tasks)

Machine learning (e.g. in a neural network or
SVM or elsewhere) emulates our intuition.



Yin and Yang
Intuition is what takes an input situation

consisting of feature vectors x y zß ß
representing our Uber car's current
environment and then tells it what to do
next.

Intuition will also be emulated by computers,
using machine learning -- already our
precise calculational abilities have been
emulated (very well!) by standard
computers.



Yin and Yang

The combination of precise calculation and
intuitive thinking are the and of ouryin yang 
thinking, and will also be the and yin yang
of the thinking of future Artificial
Intelligences.
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https://medium.com/fluxx-studio-notes/ai-virtual-assistants-and-chat-bots-before-
now-and-in-the-future-df979529ad5f


