Notes on the Unique Extension Theorem

1. More on measures:

Recall that we were interested in defining a general measure of a size of a set on $[0, 1]$.

Defined this measure P. Defined

$$P((a, b)) = b - a.$$

Question: how large a collection of sets \mathcal{F} can we extend this definition to?

Decided we cannot consistently extend this definition to all subsets of $[0, 1]$.

Goal: find a general probability measure P on $[0, 1]$ with

$$P((a, b)) = b - a$$

defined on a 'reasonably large' collection \mathcal{F} of subsets of \mathbb{R}.

Recall we were able to define P on the collection

$$\mathcal{F}_0 = \{ \text{all finite unions of disjoint open intervals } I_i \}$$

$$= \{ \bigcup_{i=1}^{n} I_i | I_i = \text{intervals (can be open, closed, or half-open)} \}$$

We claimed we could extend it to a larger collection of sets

$$\mathcal{F} = \sigma\text{-field generated by } \mathcal{F}_0.$$

More generally: We are on a set Ω, where we have a field of sets \mathcal{F}_0 on which we have a probability measure P. Recall P is a probability measure on a field \mathcal{F}_0 of sets if:

(i) $P(\emptyset) = 0$
(ii) $P(\Omega) = 1$
(iii) \(P \) is countably additive on \(\mathcal{F}_0 \) : that is, if \(A_i \) is a sequence of disjoint sets in \(\mathcal{F}_0 \), and if \(\bigcup_{i=1}^{\infty} A_i \in \mathcal{F}_0 \), then \(\sum_{i=1}^{\infty} P(A_i) = P(A) \).

We need:

Theorem (Unique extension theorem): Any set function \(P \) defined on a field \(\mathcal{F}_0 \) of sets and satisfying the properties of a probability measure on \(\mathcal{F}_0 \) extends uniquely to a probability measure on the \(\sigma \)-field \(\mathcal{F} \) generated by \(\mathcal{F}_0 \).

2. Outer measures

Assume we have a field \(\mathcal{F}_0 \) (for example finite unions of open sets) of sets on a space \(\Omega \).

Let \(P \) be a measure on \(\mathcal{F}_0 \) (note it does not need to be a probability measure). Let \(\mathcal{F} \) be the \(\sigma \)-field generated by \(\mathcal{F}_0 \).

We will show that there is a unique extension of \(P \) from \(\mathcal{F}_0 \) to \(\mathcal{F} \).

We first define the *outer measure* as an extension of \(P \).

Definition 1: Given a measure \(P \) on \(\mathcal{F}_0 \) define its *outer measure* \(P^* \) on all susets of \(\Omega \) by

\[
P^*(A) = \inf \left\{ \sum_{i=1}^{\infty} P(A_i) \mid A \subseteq \bigcup_{i=1}^{\infty} A_i; \ A_i \in \mathcal{F}_0 \right\},
\]

i.e. the smallest sum of measures of a collection of \(\mathcal{F}_0 \) sets containing \(A \).

We can also define the inner measure as one minus the largest sum of measures of a collection of \(\mathcal{F}_0 \) sets contained in \(A^c \):
\[P_*(A) = \sup \left\{ 1 - \sum_{i=1}^{\infty} P(A_i) \middle| A^c \subset \bigcup_{i=1}^{\infty} A_i; A_i \in \mathcal{F}_0 \right\}, \]

But this is equivalent to the following definition of inner measure:

\[P_*(A) = 1 - P^*(A^c). \]

Want to extend measure \(P \) on \(\mathcal{F}_0 \) to a collection \(\mathcal{F} \) of as many sets as possible.

How about choosing \(\mathcal{F} \) to be the collection of sets \(A \subset \Omega \) which have the same inner and outer measure, and then define that to be \(P(A) \)?

That is, for all sets \(A \) such that \(P^*(A) = P_*(A) \), i.e.,

\[P^*(A) + P^*(A^c) = 1 \]

(1)

define such sets to be in \(\mathcal{F} \) and define

\[P(A) = P^*(A) = P_*(A). \]

Is this collection a \(\sigma \)-field?

This is what we want, but we want to define a more restrictive condition on \(A \) which turns out to be the same.

We will define a set to be \(P^* \)-measurable if (extend condition (1)): for every set \(E \subset \Omega \),

\[P^*(A \cap E) + P^*(A^c \cap E) = P^*(E). \]

(2a)

Notice that when \(E = \Omega \) then (2) reduces to (1).

Define \(\mathcal{M} \) to be the collection of \(P^* \)-measurable sets.
Claim: the measure P^* on \mathcal{M} is essentially the extension of P on \mathcal{F}_0 that we want.

Easy to check:

(a) P^* is monotone, i.e., if $A \subset B$ then $P^*(A) \leq P^*(B)$
(b) P^* is sub-additive, i.e.,

$$P^*\left(\bigcup_i A_i \right) \leq \sum_i P^*(A_i).$$

Thus it is automatically true that

$$P^*(A \cap E) + P^*(A^c \cap E) \geq P^*(E),$$
so that (2) is equivalent to

$$P^*(A \cap E) + P^*(A^c \cap E) \leq P^*(E), \quad (2b)$$

3. Some properties of the measure P^* and \mathcal{M}

Lemma 1: \mathcal{M} is a field

Proof: Note it suffices to show that (i) \mathcal{M} is closed under complements (easy) and that (ii) \mathcal{M} is closed under intersections.

Reason: then if $A, B \in \mathcal{M}$, we have

$$A \cup B = (A^c \cap B^c),$$
so that $A \cup B \in \mathcal{M}$ also, and arbitrary finite unions follow.

Now to show \mathcal{M} closed under intersections:

If $A, B \in \mathcal{M}$, then for any set $E \subset \Omega$,

$$P^*(E) = P^*(B \cap E) + P^*(B^c \cap E)$$
\[= P^*(A \cap B \cap E) + P^*(A^c \cap B \cap E) \]
\[+ P^*(A \cap B^c \cap E) + P^*(A^c \cap B^c \cap E) \]
\[\geq P^*(A \cap B \cap E) + P^*[A \cap (B^c \cap E)] \]
\[= P^*[A \cap B \cap E] + P^*[(A \cap B)^c \cap E] \]

which using (2b) implies that \(A \cap B \in \mathcal{M} \), as desired. \(\square \)

Lemma 2: If \(\{A_i\}_i \) is a finite or infinite sequence of disjoint sets in \(\mathcal{M} \), then if \(E \subseteq \Omega \),

\[P^*(E \cap \bigcup_i A_i) = \sum_i P^*(A_i). \]

Proof: For the case of two \(A_i \), we have to replace \(E \) by \(E \cap (A_1 \cup A_2) \)

\[P^*[E \cap (A_1 \cup A_2)] \]
\[= P^*\{[E \cap (A_1 \cup A_2)] \cap A_1\} + P^*\{[E \cap (A_1 \cup A_2)] \cap A_1^c\} \]
\[= P^*(E \cap A_1) + P^*(E \cap A_2). \]

For the case of more than two \(A_i \), we proceed by induction writing e.g.

\((A_1 \cup A_2 \cup A_3) = (A_1 \cup A_2) \cup A_3, \)

and so on.

For a countable sequence of \(A_i \), we have by monotonicity, for all \(n \) and then taking the limit in \(n \):

\[P^*\left(E \cap \left[\bigcup_{i=1}^{\infty} A_i \right]\right) \geq P^*\left(E \cap \left[\bigcup_{i=1}^{n} A_i \right]\right) = \sum_{i=1}^{n} P^*(E \cap A_i) \]

so letting \(n \to \infty \) we have
\[P^*(E \cap \left[\bigcup_{i=1}^{\infty} A_i \right]) \geq \sum_{i=1}^{\infty} P^*(E \cap A_i) ; \]

(3)

Opposite inequality follows by sub-additivity; thus we have equality in (3) above, as desired. □

Corollary: The outer measure \(P^* \) is countably additive on \(\mathcal{M} \).

Proof: Just let \(E = \Omega \). □

Lemma 3: The collection of sets \(\mathcal{M} \) is a σ-field.

Proof: For \(A_i \in \mathcal{M} \), we wish to show that \(B = \bigcup_{i=1}^{\infty} A_i \in \mathcal{M} \). It suffices with small changes to assume that the \(A_i \) are disjoint (see text). Letting \(B_n = \bigcup_{i=1}^{n} A_i \), it is clear that \(B_n \in \mathcal{M} \), since \(\mathcal{M} \) is a field.

Thus

\[
P^*(E) = P^*(E \cap B_n) + P^*(E \cap B_n^c) = \sum_{i=1}^{n} P^*(E \cap A_i) + P^*(E \cap B_n^c)
\]

\[
\geq \sum_{i=1}^{n} P^*(E \cap A_i) + P^*(E \cap B^c).
\]

Letting \(n \to \infty \), we get (using countable additivity, proved earlier, for the equality below)

\[
P^*(E) \geq \sum_{i=1}^{\infty} P^*(E \cap A_i) + P^*(E \cap B^c) = P^*(E \cap B) + P^*(E \cap B^c),
\]

which with (2b) above proves that \(B \in \mathcal{M} \). □

Lemma 4: \(\mathcal{F}_0 \subset \mathcal{M} \)

Proof: We need to show that if \(A \in \mathcal{F}_0 \) and \(E \subset \Omega \), then
\[P^*(E \cap A) + P^*(E \cap A^c) = P^*(E). \]

Clearly this is true for \(E \in \mathcal{F}_0 \), since this is just finite additivity.

If \(E \notin \mathcal{F}_0 \), we approximate \(E \) by sets \(D_n \in \mathcal{F}_0 \) from above.

Specifically, for \(\epsilon > 0 \), let \(\{A_i\}_{i=1}^n \) be a finite collection of sets in \(\mathcal{F}_0 \) such that
\[
E \subseteq \bigcup_{i=1}^n A_i \equiv D_n,
\]
and
\[
P^*(E) \leq \sum_{i=1}^n P(A_i) - \epsilon.
\]

Then clearly \(C_n \) is an approximation of \(E \) from above. In this case we have that
\[
P^*(D_n \cap A) + P^*(D_n \cap A^c) = P^*(D_n).
\]

Now take limits as \(n \to \infty \). The right side clearly goes to \(P^*(E) \) by the definition of \(D_n \) above, while the left side goes to\(P^*(E \cap A) + P^*(A \cap A^c) \) by a simple approximation argument. \(\Box \)

4. Completion of the proof of unique extension

We now know that \(P^* \) is defined on a \(\sigma \)-field \(\mathcal{M} \) of sets which extends \(\mathcal{F}_0 \) and which satisfy equation (2) above.

It is easy to show that for \(A \in \mathcal{F}_0 \), we have \(P^*(A) = P(A) \).

Final step: Let \(\mathcal{F} = \sigma(\mathcal{F}_0) = \sigma \)-field generated by \(\mathcal{F}_0 \). Then we have
\[
\mathcal{F}_0 \subseteq \mathcal{F} \subseteq \mathcal{M}.
\]

And since \(P^* \) extends \(P \) to a countably additive measure on \(\mathcal{M} \), the restriction of this measure to \(\mathcal{F} \) gives us the desired extension.

5. Uniqueness and the \(\pi\)-\(\lambda \) theorem
Q: How do we show that the extension of P to P^* is unique, i.e. there is no other extension?

Definition 2: A collection \mathcal{P} of subsets of a space Ω is a π-system if it is closed under intersections.

Definition 3: A collection \mathcal{L} of subsets of a space Ω is a λ-system if

- $(1) \Omega \in \mathcal{L}$
- $(2) \mathcal{L}$ is closed under complements
- $(3) \mathcal{L}$ is closed under countable disjoint unions

It is easy to show that if a class \mathcal{C} of sets is both a π-system and a λ-system, then it is a σ-field.

Unique extension follows from Dynkin's π-λ theorem:

Theorem 1: If \mathcal{P} is a π-system and \mathcal{L} is a λ-system, and if $\mathcal{P} \subset \mathcal{L}$, then it follows also that $\sigma(\mathcal{P}) \subset \mathcal{L}$.

Proof: The proof follows from establishing the following easy statements:

1. Define \mathcal{L}_0 to be the π-system generated by \mathcal{P}. Then $\mathcal{L}_0 \subset \mathcal{L}$, since \mathcal{L}_0 is the minimal λ system containing \mathcal{C}.

 If we can show that \mathcal{L}_0 is also a π-system, then it is a σ-field and so

 $$\mathcal{P} \subset \sigma(\mathcal{P}) \subset \mathcal{L}_0 \subset \mathcal{L}$$

 and we will show that $\sigma(\mathcal{P}) \subset \mathcal{L}$.

2. For a set A, let $\mathcal{L}_A = \{B : A \cap B \in \mathcal{L}_0\}$. Show that if $A \in \mathcal{P}$ then \mathcal{L}_A is a λ-system.

3. If $A \in \mathcal{P}$, show that $\mathcal{L}_0 \subset \mathcal{L}_A$.

4. Show that if $B \in \mathcal{L}_0$ then $\mathcal{P} \subset \mathcal{L}_B$.

5. Since \mathcal{L}_B is a π-system, it follows that if $B \in \mathcal{L}_0$ then $\mathcal{L}_0 \subset \mathcal{L}_B$.
6. Thus if $B, C \in \mathcal{L}_0$ then $B \cap C \in \mathcal{L}_0$

This shows that \mathcal{L}_0 is a π-system, which was what was left to be proved.

Theorem 2: If \mathcal{P} is a π-system and P_1, P_2 are probability measures on $\sigma(\mathcal{P})$, and if they agree on \mathcal{P}, they also agree on $\sigma(P)$.

Proof: Let \mathcal{L} be the class of sets in $\sigma(\mathcal{P})$ such that $P_1(A) = P_2(A)$. Then if $A \in \mathcal{L}$, then $P_1(A^c) = 1 - P_1(A) = 1 - P_2(A) = P_2(A)$, so that $A^c \in \mathcal{L}$. Thus \mathcal{L} is closed under complements.

Can easily also show that \mathcal{L} is a λ-system. Thus $\mathcal{P} \subset \mathcal{L}$ and \mathcal{P} is a π-system, so the π-λ theorem gives $\sigma(\mathcal{P}) \subset \mathcal{L}$, as desired. \square