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Summary:
|. General iIdea: denoising functions on Euclidean
space ---> denoising in index/gene space

Il. Applications in computational biology: cancer
classification

lll. Extensions: pathway methods



I\VV. Extensions: arbitrary structure on the index space
- conceptual structures



1. Motivation:

We live In a time of massive feature vectors for
classification.

In computational biology, these include (per tissue
sample):



Features Cardinality
Gene expression array values 20K
Single Nucleotide Polymorphism (llumina) | 500K
Methylation and Phosphorylation data 200K
Gene copy number data (Agilent) 250K
TOTAL.: ~1,000K

Total numbers of DNA biomarkers available are
approaching 3 x 10”, since each DNA base will be a
biomarker once full genome sequencing is common.




Machine Learning

Example: Gene expression arrays and inference

An RNA-seq gene expression array produces
approximately 20k gene-level biomarkers describing
a tissue sample:

http://www.polyomics.gla.ac.uk/event-rnaseq2014.html; Broad Institute



Machine Learning

Result: for each subject tissue sample s, obtain
feature vector:

(I)(S) = X = (331, e ,582070()0)

— feature vector of gene expression levels

Can we classify tissues this way?

If this is an ovarian cancer tissue sample:



Machine Learning

Questions:
(a) What type of cancer is it?
(b) What is prognosis if untreated?

(c) What will be the reaction to standard
chemotherapies?



Machine Learning

Goals:
1. Differentiate two different but similar cancers.
2. Determine the future course of a cancer

3. Determine what chemical agents the cancer will
respond to

4. Understand genetic origins and pathways of cancer

Basic difficulties: few samples (e.g., 30-200); high
dimension (e.g., 10* - 10°).



Machine Learning

Curse of dimensionality - too few samples and too
many parameters (dimensions) to fit them.

Primary Problem:

e Problems in machine learning (ML) often involve
noisy input data X = (zy,...,x,) (particularly in
computational biology).

¢ ML classification methods have in some cases
reached limiting accuracies on 'standard' ML
datasets



Machine Learning

An approach:
e An important step to greater accuracy in ML requires
Incorporation of prior structural information on data

¢ A potentially important regularization involves
denoising of feature vectors alone using Tikhonov
and related reqgularization methods usually used on
functions f : R? — R.

e These are denoted as unsupervised regularization
methods -- they use Lagrangian optimization
functionals like in supervised learning.



Machine Learning

e This viewpoint takes feature vectors {x,};_, as

functions on their indices ¢, and requires continuity
with respect to graph or proximity structures on the g.

e Two standard function regularzation methods on R?,
local averaging and kernel regression, are adapted
here to unsupervised regularization.

e Result is improved feature vector recovery and thus
subsequent improved classification/regression done
with improved feature vectors.

e An example in gene expression analysis for cancer
classification with the genome as index space for
gene expression feature vectors.



Machine Learning

e Here noise in data is viewed as a source of
complexity; feature vector regularization denoises by
seeking less complex data forms.



Machine Learning

2. SVM as atool
Method: Support vector machine (SVM)
Procedure: look at feature space F' in which ®(s) lives,

and differentiate examples of one and the other
cancer with a hyperplane:



SVM as a tool

Train machine: take n =50 subjects with different
responses to therapy T, locate their feature vectors
In F', labeling them as unresponsive or responsive.



SVM as a tool

Other machine learning methods can also discriminate
feature vectors with respect to prognosis, response
to therapies, etc.

Our data is obtained in collaboration with TCGA (the
Cancer Genome Atlas).



Machine learning vs. classical statistics

3. The principle: more is more

Past. too many variables spoll the statistics; <50
variables
was typical requirement

Present: more IS better

Machine learning allows massive integration of
relationship information:

On a gene level:



Machine learning vs. classical statistics

B protein-protein interactions
B coexpression

B gene ontology

B pathway connections

Machine learning allows seamless combination of
many different data types using kernel matrices

Kernel trick: incorporate relational information into a
kernel matrix: for genes g; and g;:

Ki; = K(gi,9;) = 'closeness' of g; and g;

as measured by above relationship information.



Machine learning vs. classical statistics

Each type of gene relation gives a different kernel
matrix.



Machine learning vs. classical statistics

To integrate information in kernel matrices K,
K@ ... KM we form the sum,

K=KV 4+ . +K®,

which incorporates all these measures into one.

Information types (for example, in The Cancer
Genome
Atlas, TCGA) contain:
B Gene expression (microarray)
B Single nucleotide polymorphism (SNP) information
Bl Methylation, epigenetic information
B Gene copy numbers
B micro-RNA (miRNA) data



Noisy biomarkers

4. Problem: biomarkers are noisy!

Gene expression is non-self-replicating (microarray
example):
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How to clean up the noise? Use the same methods as
denoising functions in Euclidean space.



Noisy biomarkers
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Figure: smoothing of gene copy number arrays using wavelet denoising.
Huang, et al. http://www.biomedcentral.com/content/pdf/1471-2164-9-S2-S17.pdf

What methods help in denoising functions on
Euclidean spaces?



Noisy biomarkers

1. Local averaging (Haar wavelet denoising) - above

2. Smoothing using convolutions f(x) — fxg(x),
where g(z) = ——e*"/2 is say a Gaussian kernel.

V2

3. More generally, smoothing using kernel regression:
— Zaz xr,x;)+b

4. Spectral smoothing - filtering high spectral
components of a function:



Noisy biomarkers

The gaussian noise

The filtered gaussian noise

http://www.scilab.org/product/man/DesignEllipticFilter.html

and many other modes.

Rapaport, Vert, et al. (2007) have used spectral
methods for denoising gene expression arrays.



Euclidean denoising on gene space

5. How to transfer Euclidean space methods to
gene space”?

One can use similar methods for denoising gene
expression arrays, and more generally machine
learning (ML) feature vectors.

Gene expression arrays: Given a gene expression
feature vector X = (z,x9,...,x,), We can view it as a
function on its indices G = {1,2,...,p} or
equivalently the genes g1, ..., g,.



Euclidean denoising on gene space

Purpose: if index set G has a distance measure (e.g.
a metric or network structure), and thus a notion of
when two points ¢, j in G are 'close’, then we will try
to use this metric structure similarly to Euclidean
metric to eliminate noise.

In Euclidean space denoising of a function f(x) is
done using continuity, I.e.,

|f(xX) — f(y)| small when d(x,y) is small.



Euclidean denoising on gene space

In ML denoising can be done when we expect

| f(2) — f(7)| small when d(z, j) is small,

where d Is a distance measure on indices ¢, j (e.g.
genes)

Genes In a network: if index ¢ represents gene ¢; and j
represents gene g;, and if nodes g; and g, are close
In the gene network, we believe their expressions z;
and z; should be close to each other.

Note this is an unsupervised method which can
regularize feature vectors for any classifier (e.g.,
SVM, random forest, k-nearest neighbors, etc.)



Formalities

6. More formally:

Given distance structure (e.g., metric or network) on
the index set G (e.g. genes) of a basis for a feature
space F,sothatx € F'Is

with index G = {1,2, ..., p}.

View features z, = f(q) = f(g,) as a function on the
Indices ¢ (the feature function).



Formalities

Model features (e.g. gene expressions)

rq = f(g94) = f1(g4) + €(9q);

where ¢; represents noise, and fi(g,) is the 'true'
expression signal.



Formalities
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Base space G for feature vector x = f(g) (gene network)
Lu, et al. http://www.nature.com/msb/journal/v3/n1/full/msb4100138.html



Formalities

Now consider a smoothing transformation 7" on f(g) to
smooth out noise:

Mapping f(g) — T'(f(g)) gives
T(f(9)) = T(fi(g9)) + T(e(g)).

Transformation T'( f1(g)) will differ from the true
expression fi(g), so we have introduced bias

If & = reqgularization parameter (cluster size)



Formalities

loss of signal through bias increase:
(*) fi —T(f1) (increases with k)

However, the smoothing T'(¢(g)) of noise e will quench
it: averaging over k genes will reduce ¢ — ﬁe

Gain in signal through variance decrease
(**) L ¢ (decreases with k)

E—WE

For some value of regularization parameter k the bias
loss in (*) is balanced by the variance gain in (**).



Formalities

This Is the usual bias-variance dilemma - when do we
guench so much noise (**) that the increase (*) in
bias IS overcome?

Principle: local averaging eliminates noise.



Formalities

7. Some theorems -

Theorem. (a) Let I’ be a space of feature vectors with
basis {b, } ,cc whose indices ¢ form a graph
structure. Let f1(q) = f(q) + n(q) be a noisy feature
vector with n independent Gaussian noise. Let
{F;:0<t<T} be afilter (an family of increasingly
refined partititions of G based on graph clustering.)
Then the regularization fi;(q) of f; obtained by
averaging the noisy function f;(q) over the clusters
In 7, has an error that decreases and then
Increases, so there is a t > 0 for which the averaging
regularization is optimal.

(b) This holds also if the above averaging
regularization is replaced by support vector



Formalities

regression using a Gaussian graph kernel, i.e., local
kernel averaging helps regularize feature vectors.



Example: Local averaging

8. Example: local averaging noise reduction

Using the protein-protein interaction (PPI) gene
network as an example: consider differentiation of
metastatic and non-metastatic breast cancer (Wang;
van de Vijver).



Example: Local averaging

Wang data set:

03 metastatic
183 non-metastatic

van de Vijver data set:

79 metastatic
216 non-metastatic

How to predict metastasis?

Strategy - regularize the feature vectors before the
classification begins.



Example: Local averaging

Regularizer for feature vectors: clustering using PPI
network and then averaging over clusters

Classifier: SVM
Results:

Area under ROC curve improved by 5% to 20%



Example: Local averaging

No. Clusters Wang van de Vijver
' AUROC AUPRC ACC90 | AUROC AUPRC ACC90
64 0.658 0.450 0470 | 0.687 0.371 0472
(0.014) (0.019) (0.027) | (0.014) (0.015) (0.024)
128 0.680 0462 0477 | 0.705 0.399  0.520
(0.015) (0.021) (0.023) | (0.013) (0.019) (0.023)
756 0.692 0475  0.526 | 0.689 0.398  0.490
(0.019) (0.026) (0.029) | (0.016) (0.022) (0.030)
512 0.684 0487  0.502 | 0.686 0.375  0.489
(0.019) (0.031) (0.029) | (0.021) (0.023) (0.038)
1024 0.708 0.500 0527 | @Q.712> 0403 0.520
(0.019) (0.032) (0.029) | (0.019) (0.026) (0.026)
2048 Q.73  0.522 0.567 | 0.500 0.270  0.311
(0.017)  (0.029) (0.024) | (0.038) (0.026) (0.026)
RAW 0.534) 0362 0430 | Q.660> 0.346  0.535
(0.044) (0.032) (0.035) | (0.027) (0.028) (0.020)

Performance of local averaging of microarray data

locally averaged in PPl network




Support vector regression

9. Performance using support vector regression:

In Euclidean space: replace noisy gene expression
function by a regularized one based on support
vector regression (here x = g represents a variable
gene in base space gene network)

f(x) Zaz xr,x;)+0b

for selected points (centers) {z;};, where K(x,y) is a
kernel which gives a metric between genes x and .



Support vector regression

Example: in our gene space kernel

K(x,y) = graph diffusion kernel

(heat kernel on gene network graph).



Support vector regression

Regularized function f(xz) = f(g) is optimizer of
objective fn.

—argmanL (97), 23) + Allf Il

where g; = j'" gene
f(g) = f(x) = fn. on genes (regularized
expressions),
z; = original measured expression on gene j
L(f(g5):2) = (1f(g5) — 2| — )"
= loss function (difference between measured
and regularized gene expression)
A = regularization parameter



Support vector regression

| /1lx = norm of f with respect to kernel K

Regularization done within clusters of genes, grouped
by similar expressions in the training set



Support vector regression

No. Clusters Wang van de Vijver
' AUROC AUPRC ACC90 | AUROC AUPRC ACC90
1 0.618 0405  0.456
(0.013) (0.014) (0.024)
64 0.672 0.503 0476 | 0.706 0441  0.468
(0.018) (0.025) (0.033) | (0.017) (0.025) (0.032)
123 0.698 0.519 0.52 0.738 0.456  0.527
(0.018) (0.026) (0.032) | (0.017) (0.024) (0.035)
756 0.716> 0.526  0.565 | 0.741 0465  0.536
(0.017) (0.024) (0.030) | (0.017) (0.025) (0.033)
512 0.71 0.515  0.567 (§§.746 ) 0478  0.552
(0.016) (0.023) (0.027) | (0.015) (0.026) (0.030)
1024 0.701 0.494  0.558 0.74 0.48 0.536
(0.015) (0.022) (0.027) | (0.013) (0.025) (0.022)
048 0.676 0.47 0.521 0.718 0441  0.532
(0.019) (0.026) (0.031) | (0.015) (0.026) (0.018)
RAW 0.54 0.364 0.434 661 0.351  0.535
(0.040) (0.030) (0.035) | (0.023) (0.026) (0.020)




Support vector regression

Support vector regression performance (expression
clustering followed by regression in each cluster)
There are other potential gene metrics based on gene
networks derived gene ontology (GO), gene copy
number information (in cancer), etc.

Summary:

e Regularization of classification functions f(x) for
X € RP |s standardly done using Tikhonov
regularization functionals:

L(f)= Z|f(xz') —yil> + o | f]]%.

e The success of such methods suggests that similar
methods might be used in a different stage of the



Support vector regression

machine learning process, the formation of the
feature vector X = (zy, ..., x,) itself, which is now

viewed as a feature function z, = f(q).

e The spatial structure of R? in regularization Is
replaced by a structure on the index space G (the set
of indices ¢, e.g. the set of genes).

e \We denote this as unsupervised regularization.
e This regularization denoising of feature vectors Is a

pre-processing step prior to any supervised learning
of the data.



Some further questions:

1. Are separations into the above biomarkers
together with regularization the best way to
structure the index sets of feature vectors?

a hierarchical SVM (feature vectors are based on a
tree structure for feature indices)

e parses feature information like the brain;
e leads to both better predictability and better

clinically
applicable biomarker sets e.g., in cancer analysis




2. What Is the best way to translate detailed
biomarker-based algorithms into clinical
practice?

There iIs a lack of standard individual gene biomarkers
INn microarrays

Pathway-based biomarkers work toward the model of
hierarchical SVM and have proved to be much more
stable in classyfing cancers.



3. How should we integrate genomic (SNP,
mutation, copy number) information with
expression and epigenetic information to classify
cancer prognoses and therapeutics?

Cancer causes a cascade of changes:

e starts with inherited SNPs/ mutations

e augmented by one or more somatic mutations

e result is a causal tree of subsequent cell changes

e SNP/mutation data provide information on the root
of this tree



e expression information reveals changes in the
branches and leaves

=P, mutations

changes in pathway dyharmics

further (cascading) pathway changes

catncer phenotypes



Challenge: to integrate information which propagates
from the causes at top to effects below.



Copy number signatures

10. Better cancer signatures: gene copy number

Method: Agilent copy humber arrays from TCGA
(The Cancer Genome Atlas) for Glioma patients:

250 k DNA markers with local copy signals

CopyArray algorithm translates 250k Agilent copy
signals to 15k gene-level copy signals - a pseudo-
microarray

Allows analysis of cancer copy number arrays using
microarray software (e.g., GSEA, clustering
software, etc.)



Copy number signatures

NORMAL CELL TUMOR CELL

Fragment
sources

Scientific American



Copy number signatures
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Copy number signatures

T
a

N
-l_!"\—-___
|
|
| 1]
| E—
dormemm
_'__,.-.-_'-.
= e
I = EETH T
= T S——
e
|
Lo
Pt LTV T |
o ———
=
s el
1
1[;
E
7

e
R——
LA

(531 7 V1 1
il E b g e

i |
bl § Ik 11l
Fig 4: Array-based comparalive genomic hybridization
Fj’g 3 Chromosomal mpamﬁve g-em"c h}fbmimﬂnn rﬂCGHJ-EHEfFSfS of gjfﬂbfﬂﬂfﬂmﬂ cell iine LN-428 allows an
(CGH)-analysis of glioblastoma cell line LN-428 allows &t least 10-fold increase in the resolution of detected net
detection of net gains (proffl doviation beyond the green fina - JLC BCs, Tl B R0y s cond compared fo GGH,
{1.25) next lo the ceniral Black line (1.0]) and losses (profile Clones are plotted in genomic order (from ‘I’Pﬁﬂ Yo againalr
deviation beyond the red iine (0.75) next lo the cenlral black

line (1.0}) of chromosomal material in the tumor cells, L T S (Bt ol imemaaRn

http://www.science.ngfn.de/dateien/N3KR-
S04T04 Weber.pdf

P



Copy number signatures

204 glioma tissue samples (horizontal) / 200 genes
(vertical)

CopyArray: Natural clustering: 5 groups of genes
which co-varyn within subjects --> reduced
CopyArray dimensionality can summarize copy
number information in 5 dimensional feature vector
for phenotype prediction/clustering.



Copy number signatures

(Dimensionality reduction tool)

Ongoing: use of cluster-based reduced features for
prediction of phenotypes (e.qg. survival time)



TCGA datasets

11. Cancer genomics: TCGA

The cancer genome atlas (TCGA) provides high-
guality cancer data for large scale analysis by many
groups:



Cancer genomics: TCGA

| Mission and Goal

The Cancer Genome Atlas (TCGA) is a comprehensive and coordinated effort
to accelerate our understanding of the molecular basis of cancer through the
application of genome analysis technelegies, including large-scale genome
sequencing.

Learn more >>

| News from the Pilot Project

NEW#*NCI Announces New Funding to Support TCGA

The National Cancer Institute (NCI} has announced a new funding
oppertunity to support TCGA. This funding oppertunity announcement (FOA)
is soliciting applications for Genome Characterizations Centers and Genome
Data Analysis Centers. Presentations from the pre-application meeting held
on January 29, 2009, are available for all interested prospective applicants to
download.

Learn more >>

The Cancer Genome Atlas Reports First Results of Comprehensive Study
of Brain Tumors: Large-Scale Effort Identifies New Genetic Mutations,
Core Pathways

The Cancer Genome Atlas Research Network reported the first results of its
large-scale, comprehensive study of the most commeon form of brain cancer,
glioblastoma (GBM} in the Sept. 4, 2008 advance online edition of the
journal Nature. Among the TCGA findings are the identification of many
gene mutations involved in GBM, including three previously unrecognized
mutations that occur with significant frequency; and the delineation of core
pathways disrupted in this type of brain cancer. One of the most exciting
results is an unexpected observation that points to a potential mechanism of
resistance to a common chemetherapy drug used for brain cancer.

Learn more >>

| TCGA Data Portal

] Access TCGA Data Portal
[ View the phase two list of targets to

be sequenced In glloblastoma
multiforme (GBM)

| TCGA:How Will It Work?

Click here for more information

Featured Articles
Comprehensive genomic
characterization defines human
glioblastoma genes and core
pathways

TCGA Research Network

Nature

October 23, 2008

*Advance online edition released
September 4, 2008; final article
published in the October 23, 2008
issue of Nature.



Cancer genomics: TCGA

National Cancer Institute

TuaE CANCER GENOME ATLAS

DATA PORTAL v.v.i +1 @camié

The Cancer Genome Atas Home Site

About TCGA Data Portal Help Data Access
Overview Types of Data

| TCGA Data Portal
Welcome to The Cancer Genome Atlas (TCGA) Data Portal.

TCGA Data Portal provides a platform for researchers to search,
download, and analyze data sets generated by TCGA. This portal
contains all TCGA data pertaining to clinical information associated
with cancer tumeors and human subjects, genomic
characterization, and high-throughput sequencing analysis of the
tumor genomes.

New data is derived on an ongoing basis from TCGA analyses and is
deposited into databases. The Data Portal offers access to download
these data sets.

Click here to access and download TCGA data.

In addition, the Cancer Molecular Analysis Portal provides the
ability for researchers to use analytical tools designed to integrate,
visualize, and explore genome characterization from TCGA data.

Browse Data

TCGA Data Port:

Application Help

For more information about
how to search the Data Portal
for TCGA data, click here.

Click here to read more about
the latest progress of TCGA
pilot project.

View the phase two list of
targets to be sequenced in
glioblastoma multiforme
(GBM).

For more information about
initiatives related to TCGA, click
here.

Click here to learn more about
the new TCGA data use policy
and publication guidelines.

Analyze TCGA Data



Cancer genomics: TCGA

About TCGA Data

with and proceed to the Data Access Matrix.

Portal Help

Data Access

Browse Data Analyze TCGA Data

The Data Access Matrix allows you to select results of individual samples from multiple
centers, platforms and data types, thereby creating a custom archive with your
customized data. Simply choose the disease type and data type(s) you would like to work

¥ TCGA Related Resources

GBM Publication Site

Somatic Mutation Data

Analytical Views of TCGA data

Seguence Data from NCBI Trace Archive

access) or SFTP (controlled access).

If you prefer to access the downloads directly you may do so from either FTP (open

1 £ H Disease T
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I 2 [Gem - i multiforme 5]
DCC Resources:
o o
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Ea|Gar) e AN AWl e BN S R Go to the Data Access x The Tier 1 Clinical Data as of the 10/01/08 update
alale (NN A » (Wl alalwin
alale WK Al e [N A allNH «of the BCR Data is avallable here

Alternatively, you can search by archive to search for and download complete data
archives as submitted by the TCGA research centers.

09/05/08 - GBM Publication Data Freeze
A list of the archives that comprise the GBM
Publication Data Freeze s available here.

09/04/08 - TCGA Reports First Results
In a paper published Sept. 4, 2008, in the advance

online edition of the journal Nature, the TCGA team

GA Sample Counts

describes the discovery of new genetic mutations
and other types of DNA alterations with potential

imnlications for the diaonnsis and treatment of
« Show More
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Some results

12. Some results:

Discrimination of survival time in ovarian cancer:
better biomarkers.

Imagine a microarray which measures metabolic
pathway activation instead of gene activation:
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Problem with genes: there are too many of them!

Gene expression microarrays are massively
redundant; feature vector x will often discriminate



Some results

cancer from normal tissue with 100% accuracy (e.g.
as in ovarian cancer, glioma).

Complete discriminative set of genes from one TCGA
database (e.g. UNC) is sometimes completely
different from complete set for another (e.g. Broad
Institute).



Stable biomarkers: hierarchical SVM

Pathway biomarkers are much more robust and non-
redundant than gene biomarkers - they are
canonical.

Most significant pathways can be extracted from most
significant gene biomarkers



Stable biomarkers: hierarchical SVM
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Stable biomarkers: hierarchical SVM

Clinical applications - standardized biomarkers:

Form SVM from feature vectors with e.g. 120 pathway
strength biomarkers:

P1
P2
X =1 D3

| D120

with pathway strengths p;, based on microexpression
gene activities in p;.



Stable biomarkers: hierarchical SVM

Use machine learning methods on standardized
biomarkers.

Expectation: in near future these will form a
standard portion of clincal data.

Further stable biomarkers: genes selected by
pathway membership

Given pathway p;, select most important genes
{9ii}; C pi-

(a) These can be the 'leading edge' genes chosen
using GSEA (gene set enrichment analysis), or
genes g;; in path p; with highest SVM weights w;;.



Stable biomarkers: hierarchical SVM

These genes again form a set of biomarkers which is
stable under change of data source.

(b) The genes can be selected from SVM weights. If
SVM decision function is

f(X) =w-x+b,

where x IS microarray feature vector and w = vector
1 to separating hyperplane H.

Large components w; of w represent the gene
components in feature space which are most
Important.



Stable biomarkers: hierarchical SVM

Directions i with largest values w; represent genes g;
In a fixed pathway p that form a canonical set.

Pathway categories

Pathwrars

(Tenes



Stable biomarkers: hierarchical SVM

In small dimensional spaces (higher on the tree) the
ordering of features is much more consistent than in
high dimensional spaces.

This yields consistent feature (pathway) biomarkers.
In addition, in each pathway we have canonical genes

(most significant) in addition to above canonical
pathways.



Pathway applications to SVM discrimination
Application to SVM discrimination:

TCGA: Consider discrimination between metastatic
and non-metastatic cancer.

Example: Breast cancer metastasis data
Wang:

03 metastatic
183 non-metastatic

van de Vijver:

79 metastatic



Pathway applications to SVM discrimination
216 non-metastatic

Here we show that our stable biomarker methods give
better performance than standard single gene control
methods:
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Pathway applications to SVM discrimination

Canonical gene methods Pathway methodsingle gene c«

Ve Y —

GG: leading edge genes; GG _W: leading edge
genes weighted

PG: Pathway biomarkers; S#: control single gene
classification

Single gene control 300: control single gene
classification using top 300 Fisher selected genes

Significantly, they provide more stability in choice of
significant aggregate and non-aggregate biomarkers:



Pathway applications to SVM discrimination

Pathway categonies

Patheararys
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Important pathways p; in Wang study overlap
significantly with those in the van de Vijver study:



Pathway applications to SVM discrimination

Common pathways for discriminating metastatic & non-
metastatic BC between Van de Vijver and Wang data

HSA04940_TYPE_I_DIABETES_MELLITUS
HSA04640_HEMATOPOIETIC_CELL_LINEAGE
HSA04610_COMPLEMENT_AND_COAGULATION_CASCADES
HSAO00590_ARACHIDONIC_ACID_METABOLISM
HSA00071_FATTY_ACID_METABOLISM
HSA04110_CELL_CYCLE
HSAO00100_BIOSYNTHESIS_OF_STEROIDS
HSA03050_PROTEASOME
HSAO03030_DNA_POLYMERASE
HSA00240_PYRIMIDINE_METABOLISM
HSA00970_AMINOACYL_TRNA_BIOSYNTHESIS
HSA03020_RNA_POLYMERASE
HSA00051_FRUCTOSE_AND_MANNOSE_METABOLISM
HSA05219_BLADDER_CANCER

This is a significant overlap of biomarkers for selecting
40 pathways out of 200.



Pathway applications to SVM discrimination

p-value: with Poisson approximation we have

40
A = 40 - = 8.
P %00
Thus have: P( > 14overlapping) = P(S > 14)
where S is Poisson with parameter A = 8, getting

p = .0342.

There Is a clear signal here, obscured by
sample/condition fluctuations, which indicates
pathways worthy of biological investigation for roles
IN metastasis.

Some suspects In this role



Pathway applications to SVM discrimination

Complement and coagulation cascades: proteolytic
cascade in blood plasma and a mediator of innate
Immunity, a nonspecific defense mechanism against
pathogens.

Arachodinic acid metabolism: Arachodinic acid is
metabolized to both pro- and anti-inflammatory
elements
http://en.wikipedia.org/wiki/Arachidonic_acid

Cell cycle pathway: well known links to cancer

DNA polymerase pathway: strongly linked to DNA
repair



Pathway applications to SVM discrimination

Bladder cancer pathway

Stability of gene/hierarchical biomarkers:



Pathway applications to SVM discrimination
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Pathway stability:



Pathway applications to SVM discrimination

Blue is ovarian (TCGA data - UNC vs. Bl)
Tan Is breast: Wang vs. van de Vijver
Left two are based on hierarchically based
biomarkers

Right two based on individual gene biomarkers



MicroRNA information

13. MicroRNA variations

Machine learning (using SVM) has shown that miRNA
levels turn out to be crucial in predicting cancer
outcomes:

1)mIRNA is more accurate method of classifying
cancer subtype than using the expression profiles
(ref: Calin and Crosce; Volinia)

the performance of TCGA ovarian SURVIAL.:
82% mMIRNAs, 60% mRNA, 84% mIRNA+mRNA.



2) MIRNAs regulate their target mRNA controlling
biological functions such as cellular proliferation,
differentiation, and apoptosis ( ref : Calin and
Crosce).



Translational repression

e Ovarian cancer data sets:



» 22 short survival patients (less than 1 year)

« 22 long survival patients (greater than 5 years)
e 799 mIRNA

¢ 17,814 mMRNA



Method 2

All mRNA

x\, /'1
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My
Get significant
miRNA and mRNA | —

Apply Classification method

to get optimal number of
feature

!
Find the
relation and

pathway

1. Feature selection
2. Cox regression hazard ratio
3. Correlation coefficient between

each miRNA and mRNA< threshold
4, Etc.




More importantly, joint information from miRNA and
MRNA (regular microarrays) gives better information
than either alone - add the kernel matrices

KW 4+ K® = K

and use machine learning.

SVM:
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Most important genes in machine learning runs:
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Glioblastoma
e Data sets
» 24 short survival patients ( less than 150 days)

« 23 long survival patients (greater than 700 days)
* 534 miRNA

« 17,530 mRNA



Result for GBM

e SVM :
1) miIRNA :72.34%(13 genes selected)
2) MRNA : 72.34% (76~77 genes selected)

» Cox Regression
1) miIRNA : 85.11% (19 genes selected)
2) MRNA : 74.47% (17 genes)
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14. Copy number variations in cancer



Cancer: copy number variations

Agilent copy number array
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Cancer: copy number variations

http://www.infoquant.com/index/platform-highres
Roche Nimblegen HD2 (2.1M) Whole Genome Tiling
Array



Cancer: copy number variations

ldea: convert 260,000 local DNA copy number
markers into gene cop umb array:

...........

http://ki.se/ki/jsp/polopoly.jsp?d=3833&a=1349&I=en



Cancer: copy number variations

Replace a microarray with a gene copy number array

Each spot now represents gene copy number in
cancer - this is the DNA version of an RNA
microarray.

High correlation with microarray - gene expression is
proportional to gene copy number.

More authentic information for prediction of e.g.
survival time or drug response - genomic signature
of the cancer.



15. Next step: full sequencing

The $1000 genome will yield clinical as well as
research applications. Imagine 3 x 10” biomarkers -
the full genome.

Extraction of relevant features now becomes crucial -
an important task for data mining and machine
learning.

Cancer genome: broken chromosomes, multiple
copies, deletions of chromosome regions.



Construction of the cancer genome will start with
precise copy number data and algorithms which
determine maximal connected components of the
genome.

Integration of large quantities of data with RNA and
phenomic observations will have to become
standard.



