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Abstract

We describe SVMotif, a support vector machine-based
learning algorithm for identification of cellular DNA
transcription factor (TF) motifs extrapolated from known
TF-gene interactions. An important aspect of this
procedure is its ability to utilize negative target
information (examples of likely non-targets) as well as
positive information. Applications involve situations
where clusters of genes are distinguished in experiments
with known transcription factors without known binding
locations. We apply this to yeast TF data with target
identifications from ChIP-chip and other sources, and
compare performance with Gibbs sampling methods such
as BioProspector. We verify that in yeast this method
implies well-defined and cross-validated statistical
correlations between TF binding and secondary motifs
whose binding properties (either with the primary TF or
other possible promoters) are not certain, and discuss
some implications of this. SVMotif can be a useful
standalone method or a complement to existing
techniques, and it will be made publicly available.

1. Introduction

We will describe a machine-based method which can
augment and improve on existing ones for discovering
motifs from experimental information on transcription
factor (TF)-gene interactions. This is a high dimensional
problem which has been successfully approached using
Gibbs sampling methods (e.g., [ 21] ,30], [ ) among others
and is now also being studied using machine learning
methods ([ 17]). We will illustrate our machine36], [
learning approach and compare it to Gibbs sampling for an
important data set - TF binding information for the
budding yeast S. cerevisiae (baker's yeast).

There are many DNA components near a given gene in
a eukaryotic cell which influence its transcription and
resulting activation for protein production (expression).
These DNA regions can bind activators, co-activators, and
inhibitors. Often these act to reinforce or inhibit each
other. In general they can act combinatorially, determining
the gene's expression depending on circumstances.
Primary among such binding proteins are TF's, the main
activators of gene transcription.

The DNA binding components are largely determined
by binding site motifs, characteristic signatures of length 5-
15 DNA base pairs (bp) which bind to transcription factors
(TF's). The number of copies of a given TF's binding
motif in a gene's promoter region (a region known to
contain most TF binding sites) is a strong predictor of the
gene's response to the TF, and thus an indicator for the
gene's regulation and function. For this reason the
characterization of these DNA motifs has become an
important biological problem.

The determination of a given TF's binding motifs often
follows from identification of common DNA patterns in
promoter regions (regions known to contain most TF
binding sites) adjacent to genes which are known
experimentally to bind the TF, or shown to express their
RNA or protein in the presence of the TF in experiments.
Methodologies for obtaining this information include
microarray experiment correlations ([18], [ , [3]),25]
phylogeny [2], and gene ontology [6].

A common method has been based on Gibbs sampling
to optimize alignment among such gene clusters, in order
to determine the most common motif pattern there ([30],
[21], . In BioProspector, for example, an optimal[27])
alignment is achieved by initiating an arbitrary alignment
among positive promoter regions, and adjusting this
alignment one promoter at a time until an optimal one is
found. The Gibbs sampling is done with a probabilistic
simulated annealing algorithm in order to avoid local
minima.



These methods have more recently been augmented by
machine learning approaches. In [18], [19] for example,
boosting methods are used to accumulate weak rules
related to presence of given -mers (consecutive strings of
length appearing in the gene's promoter region) and
given regulators (TF's) as predictors of gene expression.
This is done in experiments involving large numbers of
regulators and various gene expression outcomes. From
these statistical relationships between -mer presence,
regulator presence, and gene expression, there is produced
an 'important set' of -mers statistically associated with
expression via a regulator. These are then agglomerated
into position weight matrices (PWM's) representing
probabilities of DNA bases in given locations of likely
binding site motifs. In [ ] it is shown how incorporating36
hierarchical kernel information into analysis of promoter
regions can result in accurate predictions of binding
between TF's and gene promoters.

We present here a machine learning method, SVMotif,
which finds motifs by statistical association of -mers with
known interactions of TF's with genes, learning them from
these examples. In its attempt to optimize based on
similarities between binding promoters, this method acts
similarly to BioProspector and other methods; however, it
also has the advantage of using negative (i.e., genes whose
promoters are expected not to bind) as well as positive
examples in learning a TF binding rule (see below for
some other approaches which also use negative
information). We expect that it will also be possible to
find binding motifs using other machine learning
techniques (e.g., random forests, least angle regression [ )7]
which determine important variables out of a large class;
such additional approaches will be examined in later work.

This method uses -mer importance determination
from the largest components of a modification of the SVM
gradient vector to statistically determine those -mersw
which are most associated with a TF. SVM is a kernel-
based method [ , [ , [ , [ which incorporates prior34] 35] 31]4]
information via mappings of genomic feature vectors x
which effectively change the geometry of the feature space.
SVM have been used in genomics in a number of different
ways [ , [ .26] 20], [32]

SVMotif extracts motifs from data sets involving
promoters of genes known to bind a given TF (with a
margin of error which can be allowed in input data; see
below); it will be made publicly available. As mentioned,
a general advantage of learning methods is use of negative
and positive examples which is not available in Gibbs
sampling. Negative examples can be chosen in a few
ways, including random selection of promoter regions from
the general population of genes (since being negative is a
statistical likelihood for a random promoter), which can

produce an error margin that must be statistically
acceptable. Negatives can also be found from members of
the gene population with highest values for binding the
promoter of a given gene , as in the case of chromatin
immunoprecipitation chip (ChIP-chip) data [8], [ we29]) -
use such choices of negatives here.

In cases where only examples of (positive) targets are
available (though likely non-targets could be generated
from the background gene distribution as above), negatives
can be artificially generated from permutation of positive
examples, with conservation of either zeroth or higher
order Markov properties. This has been done by us for the
data described below with 0th order Markov preservation
(i.e., only of overall nucleotide probabilities), and has been
shown to decrease prediction accuracy only by about 10%
to 15%.

The table below shows differences in sensitivity for a
few typical TF's, here chosen from the subset of
YeastGenome ([14], http://www.yeastgenome.org)
transcription factors which also have motifs listed in
Transfac [ , a curated database.24]

Name #pos YeastGenome (Transfac) BioProspector SVMotif

YBR049C 186
CGGGTRR AAGAAGARG
TTACCCG TACCCGG CYTCTTCTT

GG C

YDL020C 134 GG

CGGGTAA

CGGGTAA

TGGCAAA
GGCGGGTAA CC G
GTTTCCCCG TSGCCACCSG
GTTTCCCCG AAGAAGAGG

YDL056W 207 ACGCGT
TACATA AR YT
GCGACT GYYTTCTTS
GGTTGG SAAGAARRC

YDL

GGTGGCR

ACGCGT

106C 69 SGTGCGSYGYG
ATCCTCGAGTT CSCCACGTGGG
GACTCACAATC CCGCTGCAGCG
GCACTTACAAC CCCGGG

Table 1: A sample of yeast transcription factors
which have been analyzed in this paper . # pos
represents the number of positive examples for
TF. The standard motifs (middle column) appear
in Transfac [20] but are taken from YeastGenome
[14] (which takes biological input from Transfac
[ . Motifs to the right are in order of priority.24])

Other related work: This approach identifies statistical
properties of -mers occurring more frequently in one
group of genes than another. As mentioned above,
boosting [18], [19] and support vector machine (SVM)
approaches [ ] have been used to demonstrate machine36
learning as a viable methodology in the area of
determining binding genes and binding sites of TF's. In
particular kernel methods have been used successfully in
the work of Noble and Vert [36] to determine genes-TF
associations.

The central aspect here is learning-based ranking of -
mers from correlation with promoters known to bind a
given TF . Among other places, this is also done in [36],
which uses kernels on feature vectors of 5-mer counts. Let



x xbe the sequence of bases in the promoter of . The
feature vector of the promoter region is ax xspect

vector of length , with each position representingx
the count of the 5-mer in the indexing sequence. An
interesting addition in [ use of36] is feature vectors taking
phylogenetic conservation into account. They consider a
given upstream region of , and anx S. cerevisiae
alignment c , consisting of an aligned array of five
(matching) upstream regions of length from 5 related
yeast species, to determine functional regions. Above is
the alphabet A, C, G, T

There have been some other methods using negative
examples (likely nonbinding genes for a TF) for
determining binding motifs. An example is the Ann-Spec
algorithm [37]. Some boosting motif finding methods use
negative information [13] as well.

2. SVM feature space approach

We assume a fixed TF , and a dataset from experiments
which identify promoter regions of genes activated by (in
the present case these are ChIP-chip experiments [28],
[8]). Our methods can be adapted to other data sets, for
example those in [ ] which map activation of a gene as18
a function of TF presence together with presence of given
motifs in the promoter region of .

We have for the promoter sequence of ax
classifier indicating (with allowed error) whether
or not binds the promoter of .

The SVM gives a function on promoters, defined by

x x x w x

with a string kernel ( given byx y [17])

x y x y , (1)

with a feature map taking into the -mer feature vectorx
above. Software implementing this algorithm includes:

• SVMLight: http://svmlight.joachims.org
•SVMTorch: http://www.idiap.ch/learning/SVMTorch.html
• LIBSVM: http://wws.csie.ntu.edu.tw/~cjlin/libsvm

A Matlab package which implements most SVM
algorithms with a C-based back end is SPIDER:
http://www.kyb.mpg.de/bs/people/spider/whatisit.html
The latter implementation is used here.

We illustrate the algorithm (again for fixed), given
an example data set of promoter regionsx
x and outcomes (binding/no binding). is allowed to
have large errors (as are sometimes assumed to exist e.g. in

ChIP-chip experiments [ , as long as statistical9], [33])
patterns are not masked by very small .

For a gene in , is the FASTAS. cerevisiae x
sequence for its upstream region, up to 800 bp long. For
fixed an SVM with a linear string kernel definedx y
in (1) takes data and forms a discriminator
x w x which separates positive examples

( for which ) from negative ones. Using thex
R-SVM feature reduction procedure [38], an importance
vector ( is formed. Here,w w
represents the center (vector mean) of the positive
examples in the feature space , while represents the
center of the negative examples. The vector a b
represents a componentwise multiplication of and .a b
From this a permutation of indices of the vector isw
formed so the permuted vector is arrangedw w
from largest to smallest component. The R-SVM program
takes the components of and reduces them to 150. Thisw
feature selection is repeated 20 times with different choices
of presumed negatives (in this case genes with high
values in ChIP-chip experiments) out of about 600
negative examples available. In each SVM run the
numbers of positives and negatives are chosen to be equal.
From the top 600 -mers obtained in these 20 runs, the
best 50 are chosen using a single iteration of R-SVM. For
typical transcription factors here, there are approximately
50-300 positive examples (i.e., genes binding ), and a
larger number (e.g. 600) of negative examples, from which
different samples are taken in multiple runs to match
numbers of positives.

Though division into training and test sets is not
necessary in the motif finding procedure above, it is still
valuable to know how good the SVM algorithm is in
predicting whether a gene will bind the given TF, i.e., how
good is at segregating the positive from the negativew
examples. Typical test rate accuracy on the above data is
around 80%; see [11] for more details on the predictive
accuracy of this algorithm for TF target prediction.

Positive Examples: Known positive examples of genes
with promoters binding include binding targets taken
from ChIP-chip experiments [ , Transfac 6.0 Public29], [8]
[ ], and a list curated by Young et al., from which we24
have excluded indirect evidence such as sequence analysis
and expression correlation [ ]. Of the ChIP-chip29
interactions, only those with -values 10 (i.e., highp
confidence level) are considered positives. Selected
negatives are a randomly chosen subset of those genes
found not to be bound by a TF in ChIP-chip experiments
(typically these are the genes with highest -values and
thus least significant binding).



Figure 1: Workflow of the algorithm for a fixed
TF : (a) Feature vectors of genes consist of
counts of 4-, 5-, and 6-mers, with certain very
common -mers excluded. Negative examples
are chosen from ChIP-chip experiments [ ] with8
high -values. (b) Approximately 600 negative
examples are undersampled to match the
number of positive examples (typically 100 to
200 per promoter region). This provides
balanced sets of positive and negative feature
vectors with which to perform SVM
discrimination. (c, d) The SVM classifier
provides a weighted direction vector w, whose
largest components are iteratively recalculated
20 times, from which 50 largest components
(with corresponding -mer positions in the
current w vector) are determined at each run,
yielding up to 600 candidate -mers. These are
reduced using R-SVM [38] to 50. (e) These -
mers are extracted for clustering in the
formation of motif PWM's. (f) The resulting
candidate PWM's are evaluated by (i) re-
scanning the positive promoters and
determining individual matrices' scores (ii)
examining entropy (purity of columns) and
weights (numbers of -mers clustered to form
the PWM). (g) This information is combined
into a score, from which the top PWM's are
chosen.

For each gene in , the total number ofS. cerevisiae
positive examples typically is in the range of 50 to

300. Negatives can be chosen randomly (since there are a
relatively small percentage of positives in the data), or
from genes in ChIP-chip experiments which have large -
values. They can also be formulated as randomized
versions of true positives in cases where known non-
positives are not available.

R-SVM: For fixed , once the optimized SVM classifier
x x is determined, the weighted direction vector

w (see above) contains the information about important -
mers. We choose the top 150 components as the first 150
of the vector , output from using R-SVM (see above).w w
The corresponding positions represent -mers1

whose entries are the largest in , and are the featuresw
which most differentiate positives and negatives. The final
choice of 50 -mers is obtained after 20 iterations and a
second R-SVM selection.

Agglomeration: Typically there are many similarities in
the -mers among the final 50, as would be expected. An
agglomeration scheme is then employed to cluster those -
mers which are similar or have significant overlap. Then a
PWM (position weight matrix) is formed which reflects the
relative frequencies of the bases in in each position.
This is similar to one used in [ ], where in addition higher18
weights are given to -mers which correspond to earlier
positions in . Starting with the first -mer in positionw

(which can be of length 4, 5, or 6) the second -
mer at is matched with it, and all overlaps are
tested. If the match meets a certain threshold, then the
overlap is kept, the -mers are placed in the same cluster,
forming the first PWM. Every time a new -mer is added
in this way, it either adds to an existing cluster or (if there
are no matching clusters) forms a new one.

Comment on choices of -mers: The performance of any
clustering method depends on the quality of top ranked -
mers reported by SVM feature selection. We want to
eliminate noisy -mers before we run -mer count.

a. Typically the reported top ranked mers containk-
a large number of irrelevant noisy ones - typical of these
are, e.g., 'AAAAAN', 'ANAAAA', 'TATATA', 'ATATA',
'ACACAC'…

b. Further, if negatives must be fabricated due to
lack of information about true negatives, they can be
formed as permutations of positives (preserving their
statistical properties). In this case SVM will often pick out
regular sequences such as the above (which are not typical
in the permuted sequences) and their ranking will be
artificially higher.

For these reasons we have made the following
changes:



1. Delete 'AAAAA+', 'ACAC+', 'TATA+'… from
the original sequence.

2. Set counting resistance to 2. Thus if a sequence is
…ACACAC…, the occurrence count for 'ACAC' is not 2
but 1. Similarly for …AAAAAAAA…, the occurrence
count for 'AAAAA' is 1 rather than 4.

These two operations are assumed not to affect the
motif components, but they do reduce such noisy -mers.

In the case of artificial negative generation, another
method for elimination of noise would involve fitting a
higher order Markov background model to the whole
genome and randomly generating pseudo-negative
examples based on this model.

More about Clustering: A greedy method with 2
thresholds is used. Once the score of a -mer matched to a
cluster is above the in-threshold, the -mer is added into
this cluster.

The algorithm starts the PWM with a weighted count.
For example, if the current -mer is GGGTAA with weight
(in the final vector) of 0.230, the weighted PWM isw

0 0 0 0 .23 .23
0 0 0 0 0 0
.23 .23 .23 0 0 0
0 0 0 .23 0 0

with the first row representing A, and the remaining rows
representing C, G, and T.

After comparing all possible alignments, an incoming
-mer with the next highest weight in (i.e., the secondw
entry in the ordered vector ) will be added into the bestw
fitting existing cluster with an offset determined by its best
fit, and the cluster's PWM is updated to incorporate the
new -mer by addition of the weighted PWM
corresponding to it

Thus if an incoming -mer is now CGGGTC with
weight 0.17, it is clear that its position must be adjusted 1
position to the left for the best match, so the PWM is
updated with alignment

C G G G T C
G G G T A A

Thus we add

transposed to the left, yielding the jogged sum
0 0 0 0 0 .23 .23

0 0 0 0 .17 0
0 . . .4 0 0 0
0 0 0 0 .4 0 0

Each column's importance is stored as its column sum
divided by the total weight (.23

. (2)

The final PWM is normalized. Assuming were the
final adjustment to this cluster, we normalize each column:

0 0 0 0 0 .58 1
1 0 0 0 0 .42 0
0 1 1 1 0 0 0
0 0 0 0 1 0 0

Next log odds scores with respect to the background
model (in which each entry is .25) are taken with
pseudocounts of .1 added to both numerator and
denominator, yielding

with each entry a log ratio (base 2). Here a 0 represents no
additional information (random entry), while a positive
entry represents positive information. Now multiplying by
the weight vector (2) yields the final PWM,

,

used to compute hitting scores by scanning a promoter
region with and counting the number of scores above a
given threshold .

Intuitively, a match in an 'important' position of
should gain more of a score and a mismatch in an
important position should lose more. Note that a match or
mismatch at the 'ends' will count less here, since
importance multiples each column.

Scoring: How do we pick out the true cluster among all
clusters (each now a PWM) for ? The first part of
selecting the best PWM involves the relative entropy score

Total_Weight log

to pick out overrepresented clusters. Here is the
probability (frequency) of letter in the PWM position,
is the probability of in the background model (here

.25); is the importance score (see (2)) of the column.
Based on their entropy scores, we choose the top 5 clusters
(and their PWM's) as candidates and use them to scan the
promoter sequences which are positive for .



The hitting ratio score for a PWM is defined as

HR
# hits on positive genes
# hits on negative genes

where negative genes are randomly undersampled to match
the current number of positives. is used to assess theThis
quality of these 5 candidate clusters. Appearing
significantly more often in positives than in negatives is
assumed to be a property of a true motif. If we use
fabricated negatives instead of true ones (see above) then,
as suggested earlier, regular and generally overrepresented
-mers like 'AAAAGA' and 'CTTCTTCTT', can get high
hitting scores in promoter regions. For this reason we have
chosen to use a product of entropy and hitting ratio scores
as the final criterion; the cluster with highest product is
output as the best prediction.

For computation of the hitting ratio we must set a
threshold on a local PWM score to count a hit.
However, it is difficult to produce common thresholds for
all TFs. We have fixed the value 6.4 for all TFs,
based on the heuristic fact that for a normalized PWM, a
single strong match can add 1.65
( log the maximal log odds ratio
to the PWM score, while a moderate match gains 1 and a
weak match gains 0.5. Mismatches in corresponding
different levels will give losses of 1.8, 1 and 0.5. A hit
should have at least 4 strong matches and some matches or
mismatches which on the average do not affect the hitting
score.

Gapped motifs: The procedure for gapped motifs simply
tries a number of allowed gap sizes, and considers the
regions adjacent to the gap to be contiguous for the
purpose of the SVM algorithm, similarly to what is done in
BioProspector.

3. Experimental results

We chose 85 TF's from supplemental file 1 of binding data
from MacIsaac [23], consisting of TF's with binding
specificities known from various sources. These 85 are
chosen from a total of 88 used as a benchmark in [23].
Three TF's (MATA1, CRZ1 and ECM22) are omitted
because positive examples for them did not exist in our
original database. Of these, 74 are ungapped and 11 are
gapped. Of the full group of 85 TF's, 28 of these (25
ungapped and 3 gapped) also appear in the Transfac [24]
database, and so are analyzed separately given their
presumably more accurate resulting known binding
specificities.

The 85 TF's were tested using AlignAce [30],
BioProspector [21], and SVMotif. The following table
compares the performances these three methods on the full
MacIsaac dataset.

AlignAce BioProspector SVMotif
Top 1 to 3 Top 1 to 3 Top 1 to 3

Ungapped (74) 19 34 27 33 29 43
Gapped (11) - - 3 3 6 9

Table 2: Motif finding performance on
MacIsaac [ ] TF's with known binding23
specificities among AlignAce, BioProspector
and SVMotif. The 'top' PWM is the one with
the highest score for each TF; the number in
that column indicates how many TF's have
top PWM's which coincide with the reported
motif in .supplemental file 1 of MacIsaac [23]
1 to 3 above represents the top 3 PWM for a
single TF. Each score represents the number
of PWM hits of the 'top' motif as reported by
MacIsaac among the union of the top 3
PWM's for all TF's in the indicated row. Each
PWM is scored either 0 or 1 total depending
on whether or not it coincides with reported
motifs. The above indicates there were a total
of 74 TF's without gapped motifs, and 11 with
gapped motifs. For gapped motifs each
program was given a range of 3 gap sizes to
try.

Below are the results for the subgroup of the above
TF's which also appear in Transfac [24].

AlignAce BioProspector SVMotif
Top 1 to 3 Top 1 to 3 Top 1 to 3

Ungapped (25) 9 15 14 15 12 17
Gapped (3) - - 1 1 2 3

Table 3: Motif finding performance on
MacIsaac TF's (Transfac subgroup).

Finally, we have taken the 102 TF's from theS. cerevisiae
UCSC Genome Browser [16]. In this database there are
published PWM's for 102 TF's, complied largely from [8].
These have been converted by us to consensus sequences.
Again after elimination of two TF's because of a lack of
positive/negative examples, the corresponding results are:

AlignAce BioProspector SVMotif
Top 1 to 3 Top 1 to 3 Top 1 to 3

Ungapped (90) 27 37 33 39 34 49
Gapped (10) - - 3 3 6 8



4. Signals indicating multiple switches

We have verified, as have others [ that there are17], [8]
functional and statistical reasons for the multiple hits
which occur in all methods that correlate motifs with TF
binding. For a given TF there are cofactors which can
modulate the TF itself or reinforce the activity of the TF,
leading to a number of the 'additional' motifs discovered by
programs such as BioProspector and SVMotif. This is
added to in the multiple TF's in overlapping genomic
transcription modules. Thus there are consistent
appearances of 'additional' PWM's statistically associated
with TF's but apparently not acting as their binding sites.
We have tested some of these apparently false functional
relationships (in that the TF of interest does not bind the
additional sites), and verified them statistically. We have
divided several TF data sets in half, and showed that
'additional' PWM's were consistently duplicated on cross-
validation. This cross-functionality of motifs and the
regulators which may bind them is not completely
understood, though it has been examined in specific
situations.

We note that prediction success rate for TF motifs
increases significantly if we consider the two or three
highest scoring PWM candidates for , as opposed to just
the highest scoring one. This may imply that there are
typically three or less likely motifs which have a statistical
(and possibly functional) significance correlated with gene
expression. With this hypothesis, scoring methods by the
number of hits in the top 3 is a reasonable measure of
accuracy of our methods in finding validated motifs from
Transfac or YeastGenome. It is shown in [ ] and8
elsewhere that multiple binding sites in a promoter are
typical in yeast, and they often can act in concert; [ ]18
offers more verification in this direction.

5. Discussion

Kernel methods such this one as are based on assigning
feature vectors to genes. Such feature space-based
methods can be emulated by other feature vector
classification methods such as random forests or LARS
(least angle regression) [ in ways which incorporate prior7]
knowledge into feature spaces in an identical way. The
choice of kernel in SVM is equivalent to choosing a
feature map into a space with Euclidean geometry. Thus
any prior knowledge (e.g., phylogenetic information [ )36]
which can be incorporated into a kernel can also be
incorporated into alternative methods such as those above,
or any number of neural network-based techniques such as
ART [ ], by a proper adaptation of the feature map.10

A remark on methodology: We remark on the effective
simplicity of this process. The two basic components are
identification of a statistical correlation between -mers
and gene activation (in sufficiently controlled
experiments), and the inference of motif PWM's from
agglomeration of -mers which are significantly correlated
with TF activation. The algorithms for both parts
contribute to usefulness of the result.

This method could be further improved using ideas
introduced in [ ], in which -mer selection is improved32
using phylogenetic information from orthologous species.
As is shown there, this can be accomplished by
improvement of the kernel. As suggested above, such
incorporation of prior knowledge can also be
accomplished, in use of random forests through proper
weighting of -mers in feature vectors using phylogenetic
considerations. This will be considered in later work.
Other promising feature vector-based methods include
random projection methods [ , which are capable of5]
handling large numbers of variables and determining
important ones. Indeed, random projection and random
variable selection methods (such as RF) can be combined
with any number of other machine learning algorithms to
handle feature spaces which would otherwise be
prohibitively large.

Another important variation in the approach involves
the choice of positives and negatives in the machine
learning method. In the case of SVM we can undersample,
choosing only more reliably classified upstream regions .x
A balance may need to be drawn between the choice of
threshold and the lower number of examples which result.

Finally, we note that the greedy agglomeration
algorithm described here can be replaced by other existing
agglomeration procedures, though their effectiveness has
not been studied in this application. Other procedures
include that used by [ . The step of statistical25]
identification of -mers associated with TF activation is
what here requires machine learning methodologies.
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