
1.  SVM example:   Computational Biology

Assume a fixed species  (e.g. baker's yeast, s. )f cerevisae
has genome  (collection of genes).Z

Typically a binds to the promotertranscription factor (TF) > 
(upstream) DNA near  and initiates transcription.1

In this case we say  is a of .1 >target 
Question:  given a fixed TF , for which genes  are its> 1 − Z
targets?
Chemically hard to solve:



Fig. 1:  Left: DNA binding of GCM; right: binding of Fur (C.
Ehmke, E. Pohl, EMBL, 2005)



Try machine learning:

Consider a (genes known as targets ortraining data set 
non-targts of )>

H œ ÖÐ1 ß C Ñ× ß! 3 3 3œ"
8

where  is a sample gene and13

C œ
" 1
"3

3œ  if  is target
otherwise  .

For all genes  define function1



0 1Ñ œ C œ
" 1
"!

3(  if  is target
otherwiseœ

How to learn the general function  from examples0 À Ä! Z 
in ?H

Start by representing  as a 1 feature vector

x œ ÒB ß B ßá ß B Ó" # .
X

with 'useful' information about  and its promoter region.1

What is useful here?



Consider

EGKKXGXKKXÞÞÞGKX œ 1promoter DNA sequence of 

œ upstream region:

This is where TF typically binds; has ~1000 bases



Feature maps
2.  Feature maps

One useful choice of feature vector:

Example:   Consider an ordered list of possible strings of
length :'



Feature maps
string1 AAAAAA
string2 AAAAAC
string3 AAAAAG
string4 AAAAAT
string5 AAAACA
          ã ã

of all sequences of 6 base pairs.



Feature maps
Given gene , choose feature vector , where1 œ ÒB ßá ß B Óx " .

B œ " 1" # appearances of string in promoter of 

B œ # 12 # appearances of string in promoter of 

etc.

Consider which takes  to feature map F 1 Àx

FÐ1Ñ œ xÞ

Number of possible strings of length  is  4 4,096.' œ'



Feature maps
Thus 4,096.. œ

Ê œ ÒB ßá ß B Ó − ´ Jx " .
X %ß!*'‘

Thus let all possible (a vector space)J œ œx feature space 

Henceforth replace  by its feature vector 1 œ Ð1ÑÞx x

To classify  we classify 1 Þx

Using  goal is to findx xœ Ð1Ñ



Feature maps

0Ð Ñ œ C œ
" 1
" 1

x œ if  is target
if  is not target 

Thus:   maps a sequence  of string counts in  into a yes0 Jx
or no.

Replace  by 1 œ Ð1 Ñ3 3 3x x

H œ ÖÐ1 ß C Ñ× Ä H œ ÖÐ ß C Ñ×ß! 3 3 3 3 3x

Thus given examples  for the 0Ð Ñ œ Cx x3 3 feature vectors  in3

our sample all, want to generalize and find  for  .0Ð Ñx x



Feature maps
With data set , can we find the right function H 0 À J Ä „ "
which generalizes the above examples, so that  for0Ð Ñ œ Cx
all feature vectors?

Easier:  find a real numbers, where0 À J Ä

0Ð Ñ  ! C œ "à 0Ð Ñ  ! C œ "Þx x if   if  

Resulting predictive accuracy depends on the number of
features used, i.e., what the components  of  mean.B3 x

For example,  can be how many times ACGGATB#%*

appears.



Feature maps
B%ß&*) can be how many times ACG_ _ _GAT appears
 (i.e., any 3 letters allowed to go in middle)

 Generally choose the most significant features  - the
most helpful ones in discrimination.

 For TF YIR018W, accuracy in prediction of targets vs.
number of features:



Feature maps
 



Nonlinear kernels
SVM:  Nonlinear Feature Maps and Kernels

http://www.youtube.com/watch?v=3liCbRZPrZA

1.  General SVM:  when (x y  is not an ordinary dotO ß Ñ
product

Recall:  In yeast,  genome (all genes).Z œ

Given fixed transcription factor , want to determine which>
genes  bind to .1 − >Z



Nonlinear kernels
Have a feature map  with  the featurex À Ä J œ JZ ‘.

space, with

x xÐ1Ñ œ œ feature vector

for gene .1

For each  define1

CÐ1Ñ œ
" 1
"œ if  binds

otherwise.

We want a map  which classifies genes.  That is, for0Ð Ñx
1 − ß œ Ð1ÑZ F with feature vector  we wantx



Nonlinear kernels

0Ð Ñ Þ
 ! CÐ1Ñ œ "
Ÿ ! CÐ1Ñ œ "

x œ if 
if 

Have examples  of genes with known binding,Ö1 × §3 3œ"
8 Z

together with .  DefineCÐ1 Ñ3

x x3 3œ Ð1 Ñ

to be feature vectors of the examples.

The SVM provides  of the form0



Nonlinear kernels

0Ð Ñ œ †  ,x w x ;

0Ð Ñ  ! C œ "x  yields conclusion  (binding gene) and
otherwise .C œ "

Thus have linear separation of points in .J

What about nonlinear separations?

1.  Replace base space  by  (i.e., replace gene by itsZ J
feature vector)



Nonlinear kernels
Thus have collection of examples  for of featureÖÐ ß C Ñ×x3 3 3œ"

8

vectors  for which binding  is knownx3 3C Þ

Desire a new (possibly nonlinear) function  which is0Ð Ñx
positive when  is feature vector of binding gene andx
negative otherwise.

2.  With  now as base space, define feature mapJ new 
F À J Ä J" (now may be nonlinear but continuous).

Map the collection of examples into   Thus new set ofJ Þ"
examples is



Nonlinear kernels

Ö ´ Ð Ð Ñß C Ñ× Þz x3 3 3 3œ"
8F

Induce a  SVM in  (SVM algorithm above).linear J"



Nonlinear kernels
3.  New decision rule:

0 Ð Ð ÑÑ ´ † Ð Ñ  ," "F Fx w x .

If  we conclude  (gene binds) and0 Ð Ð ÑÑ  ! C œ "" F x
otherwise .C œ "

Equivalent rule on original :J

0Ð Ñ œ 0 Ð Ð ÑÑÞx x" F

Allows arbitrary nonlinear separating surfaces on .J



Kernel trick
2.  The kernel trick

Equivalently to above:  assume  for some .w w w" œ Ð ÑF
pNew decision rule:

0Ð Ñ œ † Ð Ñ  , œ Ð Ñ † Ð Ñ  ,Þx w x w x" F F F

Define standard linear kernel function on :J

OÐ ß Ñ œ Ð Ñ † Ð Ñx y x yF F

(as before ordinary dot product).

Now back in , can show  is a Mercer kernel:J OÐ ß Ñx y



Kernel trick

(a)   OÐ ß Ñ œ OÐ ß Ñx y y x
(b)  OÐ ß Ñx y  is positive definite.
Indeed, given any set ,Ö ×x3 3œ"

8

OÐ ß Ñ œ Ð Ñ † Ð Ñ œ †x x x x u u  3 4 3 4 3 4F F

with .  We already know ordinary dot productu x3 3œ Ð ÑF
makes pos. def. kernel.
(c)  O is continuous because  is cont.F



Kernel trick
Like any kernel function  satisfies certain propertiesOÐ ß Ñx y
of inner product, and so can be thought of as a dotnew 
product on .J

Thus

0Ð Ñ œ OÐ ß Ñ  ,Þx w x

With the redefined dot product , trainingw x w x† ´ OÐ ß Ñ
SVM is identical to before - we have already developed the
algorithm here - just replace old dot product by the new one.

Conclusion:  The introduction of nonlinear separators for
SVM via replacement of  by a nonlinear function x x− J Ð ÑF



Kernel trick
is exactly equivalent to replacement of the dot product w x†
by  with  a Mercer kernel!OÐ ß Ñ Ow x

This is equivalent to replacing the standard linear kernel

OÐ ß Ñ œ †w x w x (linear)

by a general nonlinear kernel, e.g., the Gaussian kernel:

OÐ ß Ñ œ /w x l  lw x #

Recall advantages:  the calculation of  and  involve linearw ,
algebra involving the matrix O œ OÐ ß ÑÞ34 3 4x x



Gaussian kernel
3.  Examples

Ex 1:  Gaussian kernel

O Ð ß Ñ œ /5 x y l  l#

# #
x y
5

[can show pos. def. Mercer kernel]



Gaussian kernel
SVM:   from (4) above have

0Ð Ñ œ + OÐ ß Ñ  , œ + /  ,ßx x x" "
4 4

4 4 4


|x x l4
#

# #5

where examples  in  have known classifications , andx4 4J C
+ ß ,4  are obtained by quadratic programming.

What kind of classifier is this?  It depends on  (see Vert5
movie).

Note Movie1 varies  in the Gaussian (  corresponds5 5 œ _
to a linear SVM) then movie2 varies the margin  (inà "

l lw



Gaussian kernel
Gaussian feature space ) as determined by changing  orJ# -
equivalently G œ Þ"

# 8-



4.  Software available

Software which implements the quadratic programming
algorithm above includes:

• SVMLight: http://svmlight.joachims.org
• SVMTorch: http://www.idiap.ch/learning/SVMTorch.html
• LIBSVM: http://wws.csie.ntu.edu.tw/~cjlin/libsvm

A Matlab package which implements most of these is
Spider:

http://www.kyb.mpg.de/bs/people/spider/whatisit.html



Computational Biology Applications

References:
T. Golub et al Molecular Classification of Cancer: Class
Discovery and Class Prediction by Gene Expression.
Science 1999.

S. Ramaswamy et al Multiclass Cancer Diagnosis Using
Tumor Gene Expression Signatures. PNAS 2001.

B. Scholkopf, T. Tsuda, and J.P. Vert, Kernel Methods in¨
Computational Biology. MIT Press, 2004.



J.P. Vert, http://cg.ensmp.fr/~vert/talks/060921icgi/icgi.pdf
 http://cg.ensmp.fr/%7Evert/svn/bibli/html/biosvm.html



Transcription factor binding
1.  Matching genes and TF's:

For yeast gene feature vector is .1 − ß œ Ð1ÑZ Fx

Examples:  data set  of known examples ofH œ Ð ß C Ñe fx3 3 3œ"
8

feature vectors  (together with binding ) used tox3 3C œ „ "
form kernel matrix

O œ OÐ ß Ñ34 3 4x x  

OÐ ß Ñ œ †x y x y  is  linear kernel



Transcription factor binding
OÐ ß Ñ œ /x y m  mx y #  is gaussian kernel

OÐ ß Ñ œ Ð †  "Ñx y x y 5 is polynomial kernel

Can show all of these are Mercer Kernels.

Form discriminant function

0Ð Ñ œ OÐ ß Ñ  ,ßx w x

with  determined by quadratic programming algorithmwß ,
using matrix  formed from data set .O H34



Transcription factor binding
0Ð Ñ  ! 1x  means corresponding gene  with feature vector
FÐ1Ñ œ x binds to transcription factor.

What features are we interested in?  Characterize  by its1
upstream region

of about 1000 bases (reading from the  end of DNA).&w



Transcription factor binding
Interesting feature maps:

F"Ð1Ñ œ œ 'x vector of -string counts

Specifically:  take all possible 6-strings (strings of 6
consecutive bases, e.g., ), index them with EXKEEG 3 œ "
to , and form vector  with% œ %!*'' x

 # appearances of  -mer in upstream region ofB œ 3 '3
>2

   corresponding gene 1

(large space!).

Or:



Transcription factor binding

F#Ð1Ñ œ œx vector of microarray experiment results

Specifically

B œ
" 1 3
!3

>2œ if gene  is expressed in the  microarray experimen
otherwise

Or:



Transcription factor binding

F$Ð1Ñ œ 1vector of gene ontology appearances of 

i.e., 1 if  ontology term applies to gene .B œ 3 13
>2

 vector of melting temperatures of DNA alongF%Ð1Ñ œ
  consecutive positions in upstream region

Each feature map  yields a different kernel  andF5 5O Ð ß Ñx y
kernel matrix O Þ

Ð5Ñ
34



Transcription factor binding
Combination of features:  integrate all information into a
large vector (i.e., concatenate the vector strings  intoF5Ð Ñx
one:

F F FcombÐ Ñ œ Ð Ð Ñßá ß Ð ÑÑx x x" 6 .

This is equivalent to taking a direct sum  of theJ
corresponding feature spaces .J ßá ßJ" 5

How to define inner product in the large feature space ?J
In the obvious way for a concatenation of vectors:



Transcription factor binding

F F F Fcomb combÐ Ñ † Ð Ñ œ Ð Ñ † Ð Ñx y x y"
5

5 5 .

Thus the kernel corresponding to feature map  is givenFcomb
by

O Ð ß Ñ œ Ð Ñ † Ð Ñcomb comb combx y x yF F

œ Ð Ñ † Ð Ñ œ O Ð ß ÑÞ" "
5 5

5 5 5F Fx y x y

Thus SVM kernel which combines  featureOcomb all
information is the sum of individual kernels !O5



Transcription factor binding

So addition of individual kernel matrices automatically
combines their feature information.

Positive predictive values (probability of correct positive
prediction) for combined kernel  reaches approximatelyO
90%.

Reference:  Machine learning for regulatory analysis and
transcription factor target prediction in yeast (with D.
Holloway, C. DeLisi), Systems and Synthetic Biology, 2007.



Protein characterization
2.  Application: protein sequences:

 JP Vert
 



Protein characterization
Jakkola, et al. (1998) developed feature space kernel
methods for anlyzing and classifying protein sequences.

Applications: classification of proteins into functional vs.
structural classes, cellular localization of proteins, and
knowledge of protein interactions.

Derive kernels (equivalently, appropriate feature maps!) by
starting with choices of feature spaces .J



Protein characterization
Choices of :  we map protein  into , where  J : Ð:Ñ − J Ð:ÑF F
 has information on:

 physical chemistry properties of protein ì :
 strings of amino acids in  (see DNA examplesì :
  earlier)
  motifs  (what standard functional portionsì
  appear in ?: Ñ
  similarity measures, local alignment measures withì
  other standard proteins



Protein characterization
Additional relevant protein features  would beFÐ:Ñ

 ì  sequence length
  time series of chemical properties of amino acids inì
  sequence, e.g.,
  hydrophilic properties, polarity
  do transforms on these series, e.g.ì
  Autocorrelation functions  , with !

>
> >5 >+ + +

   running parameter
  Fourier transforms

 String map: a useful feature map



Protein characterization

Consider a fixed string of length 6: e.g. W œ TOXLHV5

  Define  component  of feature map5 B>2
5

   byFÐ:Ñ œ Ð:Ñx

B œ W :5 5# occurrences of  in protein

    , Leslie, et al. 2002)Ðspectrum kernel
 or

 # occurrences of  in  with up to B œ W : Q5 5

  mismatches ( , Leslie, et al.mismatch kernel
  2004)



Protein characterization
 or   (have gaps with weightsgapped string kernels
  which decay with number of gaps;  substring
  kernel, Lohdi, et al., 2002)

 For example, given string

PMQEWKGZ KJWG  

 we have spectrum of -mers:$

ÖPMQß MQEß
 QEWßEWKß WKGßKGZ ßGZ Kß Z KJ ßKJWß JWG×

spectrum (string) kernel:



Protein characterization

OÐ ß Ñ œ Ð Ñ † Ð Ñ œ Ð Ñ Ð Ñx y x y x yF F F F"
5

5 5

where are feature vectorsx, y 

General Observations about kernel methods:

(1)  Above examples illustrate advantage of feature space
methods:  we are able to summarize amorphous-seeming
information in an object  in a feature vector .1 Ð1ÑF



Protein characterization
(2)  After that a very important advantage is the kernel trick:
we summarize  information about our sample data  inall Ö ×x4

a kernel matrix .K x x34 3 4œ OÐ ß Ñ

This allows representation of high dimesional data very FÐ Ñx
in matrix  with size equal to number of examplesK
(sometimes smaller than dimension)much 
Matrix  is all we need to find the  in the discriminatorK +3

function

0Ð Ñ œ + OÐ ß Ñ  ,x x x"
3

3 3



Protein characterization

Another approach to forming kernels:  similarity kernels

Start with a known collection (dictionary) of sequences

H œ Ð ßá ß ÑÞx x" 8

Define a similarity measure

=Ð ß ÑÞx y

Define a feature vector by similarities to objects in :H

FÐ Ñ œ Ð=Ð ß Ñßá ß =Ð ß ÑÑÞx x x x x" 8



Protein characterization
 ì  Known as pairwise kernels (Liao, Noble, 2003):
  standard distance between strings= œ
  Motif kernels (Logan, et al., 2001):ì
  distance measure between string and  =Ð ß Ñ œx x4

   motif (standard signature sequence) x4



Jakkola's feature map
3.  Jakkola's Fisher score map

Jakkola, et al. (1998) studied HMM models for protein
sequences and combined with kernel methods.

1.  Form a parametric family of probabilistic models , e.g.,T@
 HMM models of a family of protein sequences, with
  a family of parameters.@ H ‘− § 7

2.  Find an estimate  (e.g., Baum-Welsh, maximum  @!

 likelihood from some training set)

3 .  Form the feature map (Fisher score vector) on sequence



Jakkola's feature map
 vector x

F!
œ

Ð Ñ œ f T Ð Ñ Þx x@ @
@ @

ln ¹
!

4.  In feature space define the inner product (kernel
 ) byO

O Ð ß Ñ œ Ð Ñ † M Ð Ñ ß! ! !!
"x y x yF Fˆ ‰

 where

M œ I Ð Ñ Ð Ñ! ! !
X

@!
 ‘F Fx x



Jakkola's feature map
(expectation over under ) is the Fisher informationx @!

matrix (expectation assuming parameter @!ÑÞ

Advantages of Fisher kernel:

  ì Fisher score shows how strongly the probability
  depends on each parameter  in T Ð Ñ@ x ) @3

 xì Fisher score  can be computed explicitly, e.g.,F@Ð Ñ
  for HMM
  Different models  can be trained and theirì @3

kernels
   combinedO3

 



Jakkola's feature map
Results for correct classification of proteins in the G-protein
family as subset of SCOP (nucleotide triphosphate
hydrolases) superfamily:



Jakkola's feature map



Finding  kernels
4. Finding kernels - how do we decide   

We can find kernels by:

ì   Finding a feature map  into  which separates positiveF J"

 and negative examples well.

 Then

OÐ ß Ñ œ Ð Ñ † Ð Ñx y x yF F .



Finding kernels
ì   Defining kernel as a "similarity measure"  whichOÐ ß Ñx y
is large when  and  are "similar", given by a positivex y
definite function  with  for all OÐ ß Ñ OÐ ß Ñ œ " Þx y x x x

Rationale:  Note here we require for all in feature spacex 
J À"

l Ð Ñl œ OÐ ß Ñ œ "F x x xÈ



Finding kernels
So

OÐ ß Ñ œ Ð Ñ † Ð Ñ œ l Ð Ñll Ð Ñl œ Þx y x y x yF F F F ) )cos cos  (2)

where

) F F´ Ð Ñ Ð ÑÞangle between and x y



Finding kernels
So if

x y and  are similar 

(by desired criterion) then  large and by (2)  small,OÐ ß Ñx y )
i.e.

F FÐ Ñ Ð ÑÞx y close to 

Thus  and  are close in the new feature space ,similar x y J"

and are far, i.e., can be separated.different  and x y 



Finding kernels



Finding translation initiation sites
5.  Finding translation initiation sites (Zien, Ratsch,
Mika, Schölkopf, et al., 2000)

A ( ) is a DNA location wheretranslation initiation site TIS
coding for a protein starts (i.e., beginning of gene).

Usually determined by codon .EXK

Question:  How to determine whether particular  is startEXK
codon for a TIS?



Finding translation initiation sites
Strategy:   Given a potential start codon at location EXK 3
in the genome À

"Þ Start by looking at 200 nucleotides (nt) around current
EXK:

EGXKEXKXKáEG XEKáEXKGEGGîEXK (1)

             center 



Finding translation initiation sites
2.  Use the  of nucleotides:unary bit encoding

œ "!!!!à G œ !"!!!à K œ !!"!!à X œ !!!"!à œ !!Unknown

3.  Concatenate the unary encodings:  replace each nt in (1)
by unary code:

FÐ3Ñ œ "!!!! !"!!! !!!"! !!"!! á − Jïïïï
         E G X K

This becomes feature vectorÞ



Finding translation initiation sites
What kernel to use in this feature space?

Try polynomial kernel:

OÐ ß Ñ œ † œ B Cx y x ya b Œ !7

3
3 3

7

 œ B C † B C † á † B C! ! !
3 3 3

3 3 3 3 3 3
" # 7

" " # # 7 7

œ B C B C áB C"
3 ßáß3

3 3 3 3 3 3

" 7

" " # # 7 7

with  fixed and .7 ß − Jx y

Note:



Finding translation initiation sites

ì  If  then7 œ "

   number of common NT (nucleotides)OÐ ß Ñ œ B C œx y !
3

3 3

in
 strings and x y

ì  If  then7 œ #

    total number of of commonOÐ ß Ñ œ B C B C œx y !
3ß4

3 3 4 4 pairs 

NT



Finding translation initiation sites
 in  and   (times 2)x y

ì generally # of common NT in  and OÐ ß Ñ œx y x y7-tuples 
 times ) for fixed Ð 7x 7

Note:   This is a good (see previoussimilarity measure 
section).

6.  Better Kernel:  Local matches

Now define



Finding translation initiation sites

Q Ð ß Ñ œ
" B œ C
!5

5 5x y œ if 
otherwise

Define for fixed window kernel [ 5 À

[ Ð ß Ñ œ + Q Ð ß Ñ< 3 <3

3œ5

5 7

x y x y " "

œ c dweighted # matches in window Ð<  5ß <  5Ñ 7"

Usefulness:  measures correlations in a window of length
#5  " < centered at ; less noise.



Finding translation initiation sites

Now add up the weighted matches over center positions :<

O Ð ß Ñ œ [ Ð ß Ñnew x y x y"
<œ"

R

< .

Recognition error rates for TSS recognition (Zien, Ratsch, et
al., 2000)

Neural Network 15.4%
Linear Kernel  with 13.2%

11.9%
O 7 œ "

Onew



7.  General kernel construction

Many string algorithms in comp. bio. can lead to kernels, as
long as they give similarlity scores  for sequences WÐ ß Ñx y x
and which translate to pos. def. kernel .y x yOÐ ß Ñ

1. Smith-Waterman score (pairwise alignment measure,
kernelized in Gorodkin, 2001) gives similarity kernel OÐ ß Ñx y
for multiple alignments (separation of strings with
hyperplane in string space.)

2.  Kernelization  of other algorithms can be done similarly:

 ì  Kernel ICA (independent component analysis)



  algorithms
 Kernel PCA (principal component analysis)ì  
algorithms
 Kernel logistic regression methodsì  

For other examples of string kernel methods in
computational biology see talks of J.P. Vert:

http://cg.ensmp.fr/~vert/talks/060921icgi/icgi.pdf


	Untitled
	Untitled
	Untitled



