SVM example: cancer classification
Support Vector Machines

1. Cancer genomics: TCGA

The cancer genome atlas (TCGA) will provide high-quality
cancer data for large scale analysis by many groups:
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| Mission and Goal | TCGA Data Portal
The Cancer Genome Atlas (TCGA) is a comprehensive and coordinated effort
to accelerate our understanding of the molecular basis of cancer through the
application of genome analysis technologies, including large-scale genome
sequencing.
Learn more >>

\
AL

5] Access TCGA Data Portal
(5] View the phase two list of targets to

be sequenced In glioblastoma
multiforme (GBM)

| News from the Pilot Project

NEW*NCI Announces New Funding to Support TCGA
The Naticnal Cancer Institute (NCI) has announced a new funding | TCGA: How Will It Work?

oppertunity to support TCGA. This funding opportunity announcement (FOA) - =
is soliciting applications for Genome Characterizations Centers and Genome :\/{ I _H
Vicks.

Data Analysis Centers. Presentations from the pre-application meeting held

on January 29, 2009, are available for all interested prospective applicants to ’
download. | 7
Learn more >> Click here for more information

The Cancer Genome Atlas Reports First Results of Comprehensive Study
of Brain Tumors: Large-Scale Effort Identifies New Genetic Mutations,
Core Pathways

The Cancer Genome Atlas Research Network reported the first results of its
large-scale, comprehensive study of the most commoen form of brain cancer,
glicblastoma (GBM) in the Sept. 4, 2008 advance online edition of the

iniirmal Matiire Armnm the TECA Bndinne are Fhe idonkifieatinm nf rmomg

Featured Articles
Comprehensive genomic
characterization defines human
glioblastoma genes and core
pathways

TCGA Research Network
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National Cancer Institute

Trae CANCER GENOME ATLAS

DATA PORTAL ....... o, @camié

t: The Cancer Genome Atas Home Site

About TCGA Data Portal Help Data Access Browse Data Analyze TCGA Data

Overview Types of Data

TCGA Data Portal

Welcome to The Cancer Genome Atlas (TCGA) Data Portal. Application Help

For more information about
TCGA Data Portal provides a platform for researchers to search, how to search the Data Portal

download, and analyze data sets generated by TCGA. This portal for TCGA data, click here.
contains all TCGA data pertaining to clinical information associated
with cancer tumors and human subjects, genomic

characterization, and high-th hput I f th "
' gh-throughput sequencing analysis of the —rT
tumor genomes.

New data is derived on an ongeing basis from TCGA analyses and is % ;‘:D';igsn;??cg’“

deposited into databases. The Data Portal offers access to download pilot project.

these data sets.

View the phase two list of
targets to be sequenced in
glicblastoma multiforme
(GBM).

Click here to access and download TCGA data.

In addition, the Cancer Molecular Analvsis Portal provides the
ability for researchers to use analytical tools designed to integrate, For more information about

visualize, and explore genome characterization from TCGA data. ;’:\ei:\eatwes related to TCGA, click

Click here to learn more about
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About TCGA Data Portal Help Data Access Browse Data Analyze TCGA Data

¥ Get TCGA Data ¥ TCGA Related Resources

GBM Publication Site
The Data Access Matrix allows you to select results of individual samples from multiple

centers, platforms and data types, thereby creating a custom archive with your Somatic Mutation Data
customized data. Simply choose the disease type and data type(s) you would like to work
with and proceed to the Data Access Matrix.

Analytical Views of TCGA data

Sequence Data from NCBI Trace Archive

] g H Disease Ty
5 3 E ype TCGA-Data Listserv
I Bk GBM - Glioblastoma mul
DCC Resources:
5 5
: ) ) S Data Types BCR Biospecimen Barcodes Table
=3 ¥ Erl gg All Sample-to-file Association Matrix
K 1 i Clinical
L 2 * |Copy Number Results
T DNA Methylation + Portal News
GGG = (=] 2 ] =] Expression-Exon
Alalp Wil Al e folial AW Expression-Genes 01/29/09 - Public Clinical Data File
Alale W iw als W alalN W .
alal P ENINWILA] ¢ DA N A Expression-miRNA All current public GBM clinical data is available In
allale IEHIla] P [HIA Won SNP -~
i - EEEE T - - tab-delimited format here.
Alale W Als WoalalN N
Alia| e [NNENI Al e [ILA WN 10/03/08 - Tier 1 Clinical Data Spreadsheet
Ty | PRy I WILK Co to the Data Access Matrix The Tier 1 Clinical Data as of the 10/01/08 update.
alale fWiiwale fuiial s wWiw
Taltal e [WEWTA] e Te Al AN of the BCR Data is avallable here

09/09/08 - GBM Publication Data Freeze
A list of the archives that comprise the GBM
Publication Data Freeze is available here.

Alternatively, you can search by archive to search for and download complete data
archives as submitted by the TCGA research centers,

If you prefer to access the downloads directly you may do so from either FTP (open 09/04/08 - TCGA Reports First Results
access) or SFTP (controlled access). In a paper published Sept. 4, 2008, in the advance

enline edition of the journal Nature, the TCGA team

describes the discovery of new genetic mutations
GA Sample Counts and other types of DNA alterations with potential

Imnlications for the dianosis and treatment of
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2. Example: cancer classification

Source: T. Furey, N. Cristianini, et al. (2000) Support vector
machine classification and validation of cancer tissue
samples using microarray expression data, Bioinformatics
16, 906-914.

Consider a set of 40 samples of colon cancer tissue, and 22
samples of normal colon tissue (62 all together).
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For each sample s compute

X = (x1,...,x4) = microarray profile of sample s
Let
D = {X;,yi ?i1
be collection of samples and correct classifications:

|1 ifx; cancerous
Y= -1 it X; non-cancerous’

We want function f(x) = y which for a new (test) sample x
predicts its y = + 1.



SVM example: cancer classification
Note the set of all possible x = (z1,...,x,) of microarray
profiles is
R? = I = feature space

We denote
X = feature vector ¢ F

With the data set D, can we find the right function f: FF — B
which generalizes the above examples, so that f(x) = y for
all feature vectors?



SVM example: cancer classification
Easier: find a f for which

fxX)>0ify=1; f(x) <0 if y=-1

(and f(x) >> 1 indicates we are more certain y = 1).



Loss function
4. Error function

Consider the error measure: we want f(x) > 0 whenever
y = 1 and want f(x) < 0 whenever y = —1

Measure the error (or penalty) for bad choice of y by

V(f(x),y) = (1 =yf(x))r =max(l —yf(x),0).

__ [ small ify, f(x) have same sign
~ | large otherwise '



Loss function

1 vf(x)

This is the hinge error function.



Loss function

Notice a margin is built in: erroris 0 only if yf(x) > 1 (more
stringent requirement than just y f(x) > 0)

Thus data-based error (penalty) is
1 n
ea == V(f(x),y)
j=1

Not enough to determine f! As usual need a priori (prior)
information.

What other information do we have?



Loss function
Note surface H: f(x) = 0 will separate "positive” x with
f(x) > 0, and "negative" x with f(x) < 0 :



Loss function

Fig. 1. Red points have y = +1 and blue have y = —1 in space F'. H:
f(x) = 0 is separating surface.



Loss function

Additional information: introduce penalty (loss) functional
L(f) which is large when f is 'bad'.

E.G., bad maybe non-smooth, etc.

Form of L(f): assume f(x) is allowed to range over
collection H of functions.

Assume form of ‘H is an RKHS. Thuse.qg.
L(f) = || fll-

Will specify desirable norm || - || x later -- but for now:



Loss function

Solve regularization problem for the above norm and loss V':

n

fo=argmin =3 (1 — g, (x,)) 4 + Al FIE 1)

fen M54



Slack variables
5. Finding f: Introduction of slack variables

Define new variables &;

Note if we find the min over f € H and ¢; of

arg min— Zé} +Alfll%

feM,E; j

with the constraint

(1a)



Slack variables
yif(X;) >1-¢;
& >0,
we get the same solution f.

To see this, note the constraints are
£ >max (0,1 —y;f(x5)) = (L =y, f(X;)+, (1b)

which yields the claim. (Clearly in fact in minimizing sum we
will end up with §; = (1 — y; f(X;))+).



Solving SVM
Summary: the f which minimizes

n

f=argmin = (1 - £ () + AIFI%

feH j=1

Is given by the quadratic programming solution:
FX) = a;K(x,x;) +b.
j=1

We find a = [a4,...,a,]T from

aj = Q’jyj.

(1)

(4)



Solving SVM
Herevectora = (ay, ..., @,) is defined by

n
. 1
a=argmin) @ — §_TP6

with constraints

(9)



Solving SVM
We define

y = (y1,--.,yn) = D = classifications of known samples,
P = YKYT,
and

K = (Kij) = K(Xi, X;)

with x; = ' sample (e.g. microarray).



Solving SVM
Finally, to find b, must plug into original optimization problem:
that is, we minimize with respect to b

—Z 1—yif (x;)+ + Al fI%

1" n
— ﬁ;(l_%[;a’[{ X, X

after finding a.

b) + Ma’Ka
+




Right RKHS for SVM
2. The RKHS for support vector machine

General SVM: solution function is (see (4) above)
F(X) = a;K(x,x;) +b,
J
with sol'n for a; given by quadratic programming as above.

A simple case (linear kernel):
K(X,Xj) =X - X;j.

Then we have



Right RKHS for SVM

F) =) (a%) - X +b=w-X+b,
J

where

W = Zanj. (10)
J

What class of RKHS H does this correspond to? Claim the
set of linear functions of x
H = {w - x|w € R}

with inner product



Right RKHS for SVM
(W1 - X, Wy - X) = Wy - Wy

is the RKHS of K(x,y) above.



Right RKHS for SVM

Thus matrix K;; = X; - X;, and we find the optimal separator
f(x) =w X
by choosing w as in (10).

Note add b to f(x) (as earlier), so have all separator
functions f(x) =w - Xx +b.



Right RKHS for SVM
Note above inner product gives the norm

n
LF OO, = w3, = (W =Y w?
j=1

Why use this norm? A priori information content.

Final classification rule:

fX)>0=y=1

fX) <0 = y=-1.



Right RKHS for SVM
Learning from training data:

Df = (f(X1);--s f(Xn)) = (Y1, -+, Yn)-
Thus can show RKHS here is
H={f(X)=w-x:weR"}

Is set of linear separator functions (known as perceptrons in
neural network theory).

Consider separating hyperplane H : f(x) = 0:



3. Toy example:

Toy example

T

X

—



Toy example
Information

Df: {[(171)71]7 [(17_1)71]7 [(_171)7_1]7[(_17_1)7_1]}

(red = +1; blue = —1);
f=w-x+0b

= ;ai(xi 'X) +b

K(X;,X)



Toy example

W = ZCLZ'XZ'.
1

SO

Recall || f]13, = |w/|?, so

(A = 1/2; minimize wrt w, b).



Toy example
Equivalent:

yif(x;) > 1=¢; & > 0.

[Note effectively & = (1 — (W - X; + b)y;)+]



Toy example
Define kernel matrix

2 0 -2 0
o 2 0 =2
Kij = K(X;,Xj) = Xi - Xj = 9 0 5 0
o -2 0 2

4

£l = IwP? = a"Ka =2 (Za3> — 4(aras + asas).

1=1



Toy example
ai
a
wherea = | "2

aq



Toy example
Solution has (see (8a) above)

a=2\Y la=Y"

Y1 0o ... 0 1
(recall Y = 0 yf 0 = 8
0 0 ... y 0

la

o o= O



Toy example
and (8a above)

Ql

= O =~0.

2\
Finally optimize (8)

where



Toy example

P = YKY”



Toy example

O O N
N O N
o NN O
N O N



Toy example
constraints are

1
2 \n

0<@ <C - (11)

1
1

O=a-y=a +ay —as —ay.



Toy example
Thus optimize

4 4
Ly=) a;- (Za? + 2ty @3 + 2a2a4)
=1 =1

4
= Z@Z’ — (@1 + 53)2 — (@2 + a4)2.
=1

=u+v—u®—v%



Toy example

where
uU=0a;+az; v=as+ ay.
Minimizing:
1-2u=0; 1-2v=0
=

1
u=v= .
2

Clearly this is largest if we make u = v = %; this can only
happen (see constraint (10)) if a; = i Y 7.



So

Toy example

1/4
1/4
1/4
1/4

Ql
|



Toy example

Thus
1/4
_v=_ | 1/4
a=Ya= _1/4
—1/4
Thus

W= Zax,_ (X1 + X — X3 — Xg) = i((4,0)):(1,0).

1
Wi

Margin = — = 1 (we'll revisit this--).



Toy example

Now plug in a find b separately from original equation (9); we
will minimize with respect to b the original functional



Toy example

L(F) = 3300~ WX+ D)), + W]

_ i{u (140D, + [ (LB D),

FlL= (1D (0 T,



Toy example
— i B L

= A, L)

Clearly the above is minimized when b = 0.

Thusw = (1,0); 6=0 =
fX)=w-xX+b=um



Toy example

H, H, =
1
O %

X, 1 .

w
LS

1

o
. x, X




Toy example

[note in this case the margins reach just out to the closest
data vectors; this always happens if A is small enough; see
Theorem below].



SVM: Geometric interpretation
SVM: Geometric interpretation

1. Basics

Recall: if
fX)=w-x+b
for some w € F', we have defined:
£l = [w]
(independent of b).



SVM: Geometric interpretation

Fig 2: SVM geometry (2 dimensions)



SVM: Geometric interpretation
Recall Lagrangian (full loss function) to be minimized:
1 n
L) ==Y A=y f(x))+ +AWE=La+ L,  (8a)

n =1

(minimization over (w,b)).
Why was this a good choice for £? What should X\ be?

Consider variables (see (1b) earlier)

§i= (1 —yif(x)))+



SVM: Geometric interpretation
Then

1 n
L= EZ@ + Aw|? (8b)
j=1

In feature space F', define positive direction be parallel to w,
negative direction antiparallel to w.

For x € F, value of f(x) =w - X + b determined by
d(x) = distance of x from the separating hyperplane

Hy: f(X) = 0.



SVM: Geometric interpretation
Define margin hyperplane (see diagram)

Hy: f(x) =1.

We assume d(x) positive in positive direction (parallel to w),
negative in negative direction (antiparallel to w).



SVM: Geometric interpretation
Specifically

f(x) = |wld(x)

since gradient V f(x) = w, so f increases along w rate |w|
per unit change of x in w direction.

Note if y; = 1 (i.e., X, is in positive class),

ol

0 it d(x,) >
&= (1= wld(x;)); = { 1 —|wld(x;) ifd(x;) <

=

If x on positive side of H; (d(x) > )



SVM: Geometric interpretation
£ =0,
If X on negative side of H;:

§; =1—|w|d(x) = +|w|(distance from H;).



SVM: Geometric interpretation

Thusiif y; = 1
£ = 0 if X; on "correct” side of margin H,
7 |w]| - (distance from H;) if x; on "wrong" side of H, '

Similarly, defining the "negative margin" hyperplane
H_1 : f(X) = —1,

we have if y; = —1 (X; in negative class)
£ = 0 if Xx; on "correct” side of margin H_,
7| |w] - distance from H_; if x; on "wrong" side of H_,

Therefore (see above figure)



SVM: Geometric interpretation
ij w|- D

with D the total distance of points on the "wrong" sides of
their respective margin hyperplanes H., i.e., D = "total
error".

Also:

distance from separating hyperplane H, to margin
hyperplane H; =

N |W|



SVM: Geometric interpretation
[note: vectors on wrong side of margins are only ones
needed for quadratic programming calculation; these are the
support vectors]

[fewer support vectors = easier calculation = sparse
machine]

Conclusion: Minimization of full Lagrangian (1) involves a
balance between minimizing total error ) "¢, and the margin
j

width ﬁ the balance determined by the regularization

parameter \.



1. Special case: Perfect separability

If classes perfectly separable:




Minimizing

1 n
n;@ + AW = Ly + L,
N——
Ly L,
involves maximizing margin ﬁ and minimizing the total error

>-&; with the balance determined by .
j

Choose w and b so H, bisects the two groups with the
maximum "margin” (see diagram above), and the



hyperplanes H ., touch closest x; to H, (such x; are support
vectors).

Then still have

) ¢; = total error = 0,
j

while margin ﬁ is as large as possible.



We thus have in perfectly separable case:

Theorem: The w, b which minimize (1) give f(X) =w-X+b

whose separating hyperplane H : f(x) = 0 gives the widest
margin, if X\ is sufficiently small.



Summary: In the general case we choose | f||» = |w|, and
we minimize

D &+ AwP
=1

subject to
yj(W'X+b) > 1_€j
§; = 0.

This is the basic SVM algorithm for finding f(x);
see earlier for the QP algorithm leads to this.



2. The reproducing kernel

As shown earlier the reproducing kernel K(x,y) for H above
Is ordinary dot product of vectors:

K(x,y)=x"-y.



Colon cancer application

4. Result: SVM on cancer

Recall: 40 samples colon cancer tissue
22 samples of normal colon tissue (62 total).

For each sample computed
X = (x1,...,xq) = Microarray profile
Let

D = {X;,y; 2‘21



Colon cancer application
be collection of samples and correct classifications:

|1 ifx; cancerous
Y= -1 it X; non-cancerous’

Result: using leave one out cross validation obtained:
Feature space F'is 6,500 dimensional (6,500 genes)

Misclassification of 6/62 tissues using leave one out cross
validation.



Handwritten digit recognition
5. Example application: handwritten digit recognition -
USPS (Scholkopf, Burges, Vapnik)

Handwritten digits:



Handwritten digit recognition
O 72 o 0 o

/) S

2 2 2z 2 2
3 3 3 3 3

Y 4 ¥ N 4
S & 5§ & &
6 ¢ ¢ & C

7 7 7 7 7

yF & § & s

g

99 9 ¢



Handwritten digit recognition
Training set (sample size): 7300; Test set: 2000

10 class classifier; i class has a separating SVM function
fZ(X) =W, - X+ bl
Chosen class is

Class = argmax f;(X).
1€{0,...,9}

o : digit g — feature vector (g) =x € F



Handwritten digit recognition
Kernels in feature space F"

x|
RBF: K(X;,X;) = e 27
Polynomial: K = (x; - X; + 0)¢
Sigmoidal: K = tanh(k(X; - X;) + 0)

Results:



Handwritten digit recognition
((x - y)/256)1°8

polynomial: K(x,y) =

degree 1 2 3 1 5 6
raw error/% | 89 [ 47 [ 40| 42| 45| 45
av. 7 of SVs | 282 | 237 | 274 | 321 | 374 | 422
RBF: K(x,y) = exp (—|jx — y|| / (256 ¢?))

o’ 1.0 0.8 0.2 0.1
raw error/% 471 4.3 4.4 441 45
av. # of SVs 234 | 235 | 251 | 366 | 722
sigmoid: K (x,y) = 1.04tanh(2(x - y)/256 — ©)

© 091 1.0 1.2 13| 14
raw error/% 48 41 ] 43 44 ] 4.8
av. # of SVs 242 | 254 | 278 | 289 | 296






