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Overview

We are developing tremendous amounts of biological and DNA sequence information.
Large numbers of genomic and proteomic projects are ongoing.
There is an EXPLOSION of biological sequence data.
We need to understand basics: how to determine if a string of DNA is functional?
And if functional, what is its function?

Code a protein?

Act as a regulatory site (initiating transcription of genetic information)?

Act as a break point during genetic recombination?

These are very High Dimensional Problems, and often a decision (classification) must
be made.
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The cellular process:
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The transcription process: RNA Polymerase moves down DNA molecule creating
RNA copy:
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Initiation of this process:



ldentification of transcription promoter motifs

Chromatin

Distal TFBES

Co-activator complex \
Transcription

Initiation complex Transcription
{I f i Inftiation
| I

Froximal TFBS




ldentification of transcription promoter motifs

Figure: Biology of DNA transcription. CRM is cis-regulatory module, a molecular complex
can co-activate transcription once a TF arrives.

We are dealing with the first step - the start of transcription

1. The Problem:

1. Transcription factor (or a combination of them) attaches to DNA

DNA4

promo ter gene
region
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Fig. 1. Portion of chromosome string with TF attached to promoter region; this pattern repeated approximately 1000 times per
chromosome

2. Signals RNA polymerase to start to copy DNA to RNA at a unique location nearby
(transcription).

TE RMNA

promoter

region
geng



ldentification of transcription promoter motifs
3. MRNA copy of DNA is transcribed and outside necleus to ribosome

DNA CGAACAAACCTCGAACCTGCT
—

L —

@ Transcription

mRNA. GCU UGU UUA CGA

l Translation

Polypeptide: AlaCys Leu Arg

4. tRNA (transfer RNA) matches amino acids to codons in mRNA. Each amino acid has own
tRNA that binds only it.
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5. Ribosome carries out construction of the protein in the exact sequence coded by the RNA.

More succinctly:

Transcription Splicing Translation

DNA — pre-mRNA — mMRNA —  protein

Note: translation involves transformation of
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MRNA — tRNA — protein.

(d) Post-translabion /
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Human: ~ 25,000 genes — 25,000 proteins — determination of cellular and body function
and structure
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Goal:

Develop statistical and math methods for identifying DNA locations where transcription
IS initiated through attachment of transcription factors (TFS).

Important biologically, expensive experimentally.

Use statistical learning methods to identify new binding sites from examples based on
DNA seqguences of experimentally known ones.
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The problem:

Of the 25,000 human genes over all 23 chromosome

pairs, find promoters p; and the locations on them which which a
specfic TF ¢ attaches to.

e The mechanism of TF-gene binding is hard to solve chemically, because of its
complexity;

e Means for explicitly solving bindings (fig. 1) computationally still far off
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Left: DNA binding of GCM,; right: binding of Fur (C. Ehmke, E. Pohl, EMBL,
2005)
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Typical binding modes

e Dbasic uncertainty principle trades off between gene-TF identification accuracies vs.
throughputs.



ldentification of transcription promoter motifs

More Detail: Promoters

1.

Promoter is a region of DNA which attracts RNA polymerase for the initiation of
transcription.

Promoter region of DNA contains regulatory sequences which attract
transcription factors (TF's)

Regulatory sequences consist of inexactly repeating patterns (motifs).

Motifs are very similar across species - they attract specific transcription factors.



Goals:
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Regulatory sequences

IMMTY
MMTY
hGH
MSY
MSY
TMT
TO
TAT
‘TAT

GRE Consensus Sequence

TGGTTT
TTTATG
CCTTTG
CATCTG
TTCAGC
GCACCC
CTCATA
TGCTCC
TACGCA

GGTATCAAA
GTTACAAAC
GGCACAATG
GGGACCATC
TGTTCCATC
GGTACACTG
TGCACAGCG
CTTTCATGA
GGACTTIGTT

CTCTGC

TGTTCT
TGTTCT
TGTCCT
TGTTCT
TGTTCT
TGTCCT
AGTTCT
TGTCCT
TGTTCT

TGTACAGGA

TGTTCT

GATCTC
TAAAAC
GAGGGC
TGGCCC
TGGCCC
CCCGCT
AGTGAC
GGCCCA

AGTCT1
AGCTAC

-3

GGTACANNN

P
TGTTCT

MMTY = mouse mamimary tumor yirus
hGH = human growth homone

MSY = murine sarcoma viris

hMT = human metallothionain

TO = tyrosine oxidase
TAT = tyrosine aminolransferase
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B Decrease cost and increase speed of TF-gene binding and binding site identification.
B Extend methodologies to other bioinformatic areas

e (Modeling) How should an integrated mathematical model of TF-gene interactions
look?

We are extending toolboxes for gene-TF information, focusing on information integration.

e (Applications) How can such a model be used biologically to improve knowledge of
systems and pathways?

e (Ergonomics) How to allow biologists to use such inferences?

Implications:

Gene-TF associations studied here can integrate information on biochemical pathways
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using machine learning methods

Protocol for organized replacement of experimental methods with mathematical and
statistical ones.

2. Approach
Problem: find a pattern occuring in vectors in a high-dimensional space S

Here

[ DNA )
S =space of ¢ RNA } sequences
| Protein |
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Initial goal. discover a pattern-sensitive map
- {3)

B={1, -1}

where:

R = real numbers

EX: For fixed transcription factor (TF) ¢:

Given gene g, let

p = promoter sequence of gene = ...acttact...



Introduction

&— Promoter Sequence > o
transcription start
—>

actiactgacgtgcitacigcgcagitactgag |
lUpstream l l Gene Dtown—
stream

Regulatory Motifs

extrapolate

1 if g binds ¢
f(s) = { —1 otherwise’

from examples to determine which genes g are targets of ¢.

Or: we may want to extrapolate unknown f defined by
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f(p) = location of binding sites

(Binding sites occur as motifs of length ~ 10 bases)
Such information traditionally experimental.
Can also be a classical learning problem -
Information about f:
Data =D = {s;, ¥y}

where
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p; = promoter sequence of gene g;

[ +1 ifg binds with ¢
Y=Y 21 ifnot

Extrapolate
f(p):5—B.

We seek new learning methods for such gene classification and transcription factor
binding site (TFBS) identification.
Thus problem is:

1. Given fixed TF ¢ and experimentally known gene set {g;}; which it targets (i.e., to whose
promoters p; it attaches).
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Can we extrapolate (e.g., through learning or Gibbs sampling) to computationally find new
targets g7

2. Given a known set of target genes {g; };, can we determine the binding sites on
promoters p;? Typically 10-mers (10-strings) with little variation, known as motifs.

Here we consider problem 2
For a given TF ¢, our goal here is to find genes it binds and its binding site motifs.

Equivalently: Given a known gene set {g;}; with promoter sequences {p;}, known to bind
t, what is an overrepresented set of 10-mers (DNA subsequences of length 10) in the set

{pi}?

Rationale: promoters generally have multiple copies of a motif if the are functional.
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This 'overrepresented set' of 10-mers should contain binding motif of ¢.



Regulatory sequences

hiGH
W5
M5V
T

O
TAT
“TA&T

CTCTG

Introduction

GRE Consensus Sequence

TOGTT GTATCAA
TTTAT TTACAAA
CCTTT GCACAAT
CATCT COGACCAT
TTCAG GTTCCOAT
GCACC GTACACT

CTCATATGCACAGC
TGCTCOCTTTCATGATGTCCT

TACGCAGGACTTIGT
GTACAGGATOTTCT

TGTICT
GTTCT
GTCCT
GTTCT
GTTCT
GTCCT

AGTTCT

GTTCT

-

GOTACANNNTOTTLCT

MMTY = Fryoses mamimary lumod virgs
hGH = hurman growth homone

MESY = muring S50 cama vinis

T = Fwumaany rreetliol hilon ain

TO = TyTosine oxidase

TAT= 'I':I"I!'I!I--'I!- Fninoiransfarase

ATCTEC
AAAMAC
AGGGC
GoCCC
GOGCCC
CCGCT

GTGAC
GCCCA

GTCTT
GCTAC
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Position weight matrix (PWM):

Position number
‘0 O 0

N QA
P OO

1 0
6 .8
3 2

represent preferred binding motif for ¢.
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Typical test data: often more than 1 motif per

oo -4 N N 4 o e —

—_ o o —a s s s . — [
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J. Liu

sequence.

taatyttbgtgotgotttttotggocateqyocyayaatagonegtygtytyaaagactn Cttga
Tacasaaacyoytaacadaagbgtctataatoacyyoagads agioca cattgatta ek alels ol
fraasCoCCcadtaacTiaaTEaTOattLyttatatataactitataadttoctasaaattacacad

agtgaatts

gacqcaattas]egeell ek isfebdel-badel oo Cacccodggobttacactttatgottocygoteg

arattaccygooaatoopegek i el Sl Rt bbb Bl a o acyg b ocgtagggooi aqgaggat
Tgagyagyogyyagyatyaqaacacygottobtytynactacawagagqyooatgtangs nutttﬁ

Tatocagogtegbthtagytgagtiotta atasagathto s Dyl ;
Jotgacasaasagattagdacataccttatacaagactbocthtbitto ata Copfegel

tEtttCasacattaspattotbacgtCastttataatotttasaasnagratttaatatigoteccoga
cocatgagagtgaasatigy

[ctggocttaactatgoyggoatos
ctgtoac sitd aataaatoctgytytecoctgttgatacogoyaagooctgm
Jatttttatactttaactigtbgatatttadaygratttasttgtaataacyatactotygaaagtat

Jgaafgatocactiogcags

Q: How to find overrepresented 10-mers?
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Current algorithms

e Largely optimization, taking genes known to bind specific TF, and identifying DNA
subseguences (sequential strings of base pairs typically of length 5 to 15)
overrepresented in gene promoters.

e Typically use Gibbs sampling, with objective of maximal alignment of sequences in
known binding genes.

e Machine learning methods for this are new

These include: both types of TF problems described above (identifying genes and
gene locations)

Have capacity for processing high dimensional information-
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We consider:
B Support Vector Machine (SVM)
B Random forests (RF)
B SVM Ensembles (SVME)

All based on maps into feature spaces.

Plan: head-to-head comparison of substring-based kernel methods with standard motif
algorithms.

e BioProspector
e AlignACE
e MDSCAN

Claim: SVME and RF can find subtle motifs (binding DNA patterns) in humans
(challenging task).
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Important aspect of both Gibbs and learning methods: ranking of promoter
substrings by statistical correlation with genes whose promoters bind to given TF ¢.
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Gibbs Sampling:
Optimally align all p; which bind ¢ (previous diagram).

l.e., score alignments of all (split) 12-mers (in this case) p; and find alignment with highest
score with Gibbs sampling and simulated annealing [Lawrence, Liu, 1993].

Typical pre-alignment:

4. Motif

I.-nr'-

width = w

length n,




Learning appoaches

3. Learning approaches
Important advantage of learning methods for TF binding site location:

Can use negative examples as well as positive examples, i.e., promoters which do and
do not bind ¢.

Machine learning approach:

In species S for fixed ¢, obtain set of gene promoters

P1,---sPn
likely to bind ¢ (experimental information, etc.). Note for gene ¢; we have promoter
Pi =p(9:)

IS the promoter sequence of gene g;.



Learning appoaches

In addition, find negatives, i.e., promoters p,,.1, ..., Pnr+m t0 Which ¢ probably does not
bind.

Use as learning examples for extrapolating
f:P—->B={-1,1}

on the space P of promoters p with

f(p) = {1 if t binds p

—1 otherwise °

Key in learning methods:

Feature map ® from genes ¢ into feaures x € F' = feature space :
®(g) = ®(p(g)) =x € F



Learning appoaches

X = ®(g) gives relevant information now any learning algorithm can be
applied.

Feature space and learning methods now common in computational biology:
e protein analysis [Leslie, et al.]

e TF binding prediction [Holloway, Kon, et al.]

e Motif finding [Vert, et al.].

Dogma of learning approaches for TF binding:

1. Choose good feature space F' with features x(g) = (x1,...,x;)
depending on promoter of gene g.

2. Re-define desired output



Learning appoaches

flg) = f(x(g)) = f(X)

so it Is defined on F

3. Learn f from training data
D = {(Xi, ¥i) }s-

Howtolearn f : F — B

£(X) = 1  if g corresponding to x IS a target
~ | —1 otherwise

from examples?

Note without feature space, f would map promoter p to y € B, so

f: ./41000—>IB%,



Learning appoaches

where A = {A,G,C,T}.

Remark: The structure is wrong on this space; difficult to guess f from examples D
(telephone directory problem).



4. The string feature map

Given list

String map

string;

AAAAAA

string,

AAAAAC

strings

AAAAAG

stringq

AAAAAT

strings

AAAACA




String map

of strings of 6 base pairs. Recall P is the space of promoter DNA sequences.

Consider feature map x : P — F', with x(p) = x € F', with components

x; = # appearances of string s; in promoter p.

Then x € F has 4° = 4,096 components = F = R*09,

Transferring f from p to x = x(p); now
f:F—DB.

Thus: f maps sequence x of string counts in F' to yes/no in B.

With data set



String map

D = {Xi7 yz},

seek function f : F — B which generalizes D.

Easier: find f : FF — R, where

fF(x)>0if fi(x) =1; f(x) <0 if fi(x)=-1.



SVM approach
5. SVM approach

Assume SVM kernel (similarity measure) K (x,y) for string feature vectors x,y € F

Seek
f:F—R

with f = f(x) which predicts binding to gene g with X = X(g).

f > 0and f < 0 cases separated by hyperplane H : f =0 In F".




SVM approach

Geometry of F encoded in K(x,y) = X -y (nonlinear dot product).
Obtain

Zaz Xz: X

For linear dot product K (X,y) =X -V :
:Zaixi-x—kbz W - X 4+ b.
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6. Prior SVM gene classification work
Spectrum (string) kernels - Vert, Noble, et al.:

I = feature space of k-mer (k-string) counts (k = 5).

®SPet(x) = vector of length 4°

with " position ®;(x) = count of the i*" k-mer.

Conservation information: their feature vectors take phylogenetic conservation (string
conservation across species) into account.

Specifically: given promoter p € A" in S. cerevisiae, consider alignment

c € (A%)" = aligned array of five (matching) promoter regions of length »n from 5 related
yeast species.



Prior SVM work

Have 'marginalized' feature map

marg Z(I)spect p(hlc) = ((I)Zspect(h))

= expected value of the spectrum kernel over possible common
anscestoral sequences h of the set.

Probability distribution of h conditioned on ¢ obtained with phylogenetic model from
[Tsuda].

Effect: reinforces k-mers consistent across related species (more likely
to be functional);

More direct way: first determine vector d(g) which labels every site of promoter p(g) by
whether it is likely functional or not based on conservation among species.



Prior SVM work
Specifically

di(g) = 1 If site ¢ Is conserved among 5 yeast species
"9 =10 otherwise -

Discretizing above leaves room for errors, but resulting noise reduction is useful.

Now [Vert] replace spectrum (k-mer) kernel by the 'relevant' kernel corresponding to
feature map

d'®'(h,d) = count of 'relevant' occurrences of k-mer i

= # occurrences at sites all of whose locations are relevant.

for any string h.
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7. SVM-based classifiers for targets of ¢
Before we locate motifs, we will classify genes (wrt binding/nonbinding by ¢).

Given fixed TF ¢:
f:X—=R

X = X(g) = feature vector of gene ¢

X € ' = feature space



SVM Classifiers

y =1 and y = —1 cases separated by a hyperplane H : f(x) =0




SVM Classifiers

Procedure:

1. Train SVM

D = {(xi,yi) }i2{"

[use n positive X;, m negative x;].
2. Find optimal f =w - -X+b

f predicts new genes g which are targets of ¢



SVM classifier applications

Ex: Human TF WPL1:
From 14 known positive genes have extrapolated much larger number of potential new
targets for investigation, and have some new implications for pathways.
New high reliability targets of the WT1 are genes
RNH1, IGF2AS, CD151
Relation to Wilms' tumor:

WT1 involved in Wilms' Tumor (8% childhood cancers).

Genes in significant loci include oncogenes and tumor suppressors -- candidates for
Involvement in cancer progression

May explain some observed clinical and biochemical data.



SVM classifier applications

Example: chromosomal region 11p15.5 (known in Wilms' Tumor)
New targets for WT1 (p < .005) here are tumor suppressors
RNH1, IGF2AS, and CD151.

Other regions involved in Wilms' Tumor have new target predictions:
16q, 1p36.3, 16p13.3, 17925, and 4p16.3.

Potential binding sites can be extracted using standard motif finding algorithms (e.g.,
Weeder)



SVM classifier applications

Potential Binding sites for WT1

A Previous consensus sites C Weeder Top Motif
GCGGGGGCG 2
GCGTGGGAGT
GNGNGGGNG 24
GNGNGGGNGNS P
o — o~ e ~ w o X
B Highest ranked k-mer " Second Motif :
2

its

bi

SVM: CGCG

Oligo-analysis: CGCGGG

Weeder best 6-mer: CGACCG F1

Weeder best 8-mer: CGCGTCGA

Weeder best 10-mer: CGTCGCGTCG AR ARl ——h =
5 3’




SVM classifier applications

Example: Human TF Oct4 - new target predictions fit into WNT pathway:

nucleus
extemnal cytoplasm TAKA

|
FRP |dax IGAT Du lin
Dall r cmyc |
Procx [Y:] Cki-e/ GBP EE2A Il Prote|n52 c-jun ]
Wnt

Frizzked B Gsk-3BTAPC m

i

hDvl | Beta
|j LRP% catenin  m PPARG
[ n
Cer-1 Wif-1 - Axa d
. T ] w CiBP
- - Axin CKl-am Groucho
Dkk = - sox17
P53 Siah1

Beta-TrCP
Skp1
Skp1 Cult
Canonical WNT Pathway ~ APC Ebit Abx1

B Predicted target
[ Known target

proteolysis

Example: Yeast TF's:



SVM classifier applications

L-aspartate

......................................... _ Targets of GCN4 in an amino-
 L-aspartate 4-P-transferase acid biosynthetic pathway
3 HOMs 5 . . Previously known to be
L-aspartyl 4-P regulated by GCN4
- New Predictions
Reaction in
v —

_ metabolic pathway
L -aspartate-semialdehyde — — » Transcriptional

_ —
v
s, ~ homoserine  _______________
| -............... Met4

homocysteine

tREERERIRERERER R RS

O-phospho-L-
homoserine
“threonine synthase
et e ; homoserine
L-threonine

tetrahydropteroyltri
-L-glutamate

L-methonine
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8. Finding binding site motifs

Feature space F' = string counts:

x; = count of 6-mer ¢

AAAAAA

ATGCTG

GCCGTA

1T



Finding binding motifs

Better choice:
x; = count of 6-mer ¢ weighted by conservation

l.e., 6-mer M is weighted by ¢ € |0, 1] which determines level of conservation of average
position in M in closely related species.

How to find binding sites?

Which 6-mers z; best differentiate + and — ?
FX) =W X+



Finding binding motifs

w = optimized gradient vector between y > 0 and y < 0 cases



Finding binding motifs
Use

W = =V/.

wq
Largest components give primary direction of gradient; these are 6-mers which best
differentiate y > 0 and y < 0.

Use SVM-RFE (recursive feature elimination) to iteratively reduce w to most important.
Typically cut number of features each time and re-calculate w recursively.

For yeast. approx. 50-300 positive examples per gene.

Sample selection repeated 20 times with different choices of negatives (genes with high p
values in yeast ChlP-chip experiments) out of 600 available.
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In each SVM run numbers of positives and negatives are equal.
Reduce from ~ 4000 to 150 to 50 features z;.

1. actgtg
2. gtcact
3.tgacta

Best clustering:

a c t

«Q «©
Q O «Q
QO QO
O O



Finding binding motifs

Now: 'unrelated' 6-mer:
tcttta

— start new cluster.

Result: Typically obtain ~ 4 significant clusters, each with a probability weight materix
(PWM) representing probabilitity distribution of bases in each cluster position.
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GCN4 binding sites
AGACCAA

GGACGCA

TGACTCA

TGACTCA

TGACTCA

TGACTCA

TGACTCA

TGACTCA

TGACTCA

TGACTCA

TGACTCA

TGACTCA

TGACTCC

TGAGTCC

TGAGTCG

TGAGTCT

TGAGTCT

TGAGTCT Probability matnx for GCN4

TGTGTGT pos O 1 2 3 < 5 6

A 0059 0036 0927 0.029 0044 0.101 0.697
C 0017 0022 0008 0662 0.027 0827 0043 T ACTC&

TGAsTCa T D.QEIS_ 0077 0054 D_{)):S 0911 0.045 {}21{
G 0015 0866 0012 0251 0018 0029 0.045 Sequence logo

G. D. Stormo, DNA Binding Sites: Representation and Discovery
Bioinformatics 16 16-23,2000

Formation of PWM



Finding binding motifs

Clusters scored using combination of
entropy scores = how atypical the string is and

hitting scores = counts of above-threshold matches to PWM along
candidate promoter p;.

Precisely hitting ratio score for a PWM is defined as

__ # hits on positive genes

HR = : :
# hits on negative genes

In a pair of positive and negative gene samples of same size.



Finding binding motifs

Clustering algorithm: Assume (' is current set of clusters

Initial step: S = {s1, s9,..., sy} = string (k-mer) set to be aligned, ordered by weight in w.

C' = empty.

Step 0: Form a new cluster from s;. Delete s; from S.

Step 1: If S = empty, then quit. Otherwise, pick out the string = € S with the highest weight.

Step 2: Compute the scores of the string « from Step 1 w.r.t. each of the current clusters in C. If
the highest score is greater than the addition threshold (thresholdl in the code), go to step 3
(addition step). If the highest score is less than the new cluster threshold (threshold2 in the code),
go to step 4. Otherwise, go to step 5

Step 3 (addition step): Add string x into the cluster producing the highest score, and delete x from
S. LetS=S5UEFE.Gotostep 3'.

Step 3' (deletion step): Examine each element in the cluster being updated in step 3 by computing
the score of this element w.r.t. the PWM of this cluster. If the score is smaller than the deleting
threshold, move this string back into S.

Step 4: Form a new cluster in C' from string =, and delete string x from S. Let S = SU FE. Go to
step 1.

Step 5: Move string x into the Exceptional set £. Go to step 1.

Clustering algorithm




Overall strategy:

Finding binding motifs

Gene feature vectors
(positive and negative)

Undersampling

Gene feature vectors i
(balanced +/-) 1

SVM classifier, w vector

SVM-RFE - reduce to 50 |
features 1
!

Clustering
algorithm

Motif clusters -
PWM's

Re-scan promoter regions
with each PWM;
Measure entropy, kmer
weights

Determine top 3 PWM,
top PWM for motif




Finding binding motifs

Typical results for 4 TF's:

Name #pos | YeastGenome (Transfac) | BioProspector SVM
CGGGTRR CGGGTAA AAGAAGARG
YBR049C | 186 | TTACCCG TACCCGG CYTCTTCTT
GGCGGGTAAC
GGCGGGTAA CCGGTGGCRG
YDLO20C | 134 | GGTGGCAAA GTTTCCCCG TSGCCACCSG
GTTTCCCCG AAGAAGAGG
TACATA ARACGCGTYT
YDLO56W | 207 | ACGCGT GCGACT GYYTTCTTS
GGTTGG SAAGAARRC
ATCCTCGAGTT | CSCCACGTGGG
YDL106C | 69 SGTGCGSYGYG GACTCACAATC | CCGCTGCAGCG
GCACTTACAAC CCCGGG

Table: A sample of yeast transcription factors analyzed.
# pos is number of positive examples for TF. Selected motifs to the right are in order of priority.



Finding binding motifs

Example: Results in yeast -

BioProspector | SVM
Top [1to3 1 (1to3
Ungapped (34) | 15 16 16 | 24
Gapped (10) 4 5 3 |5

Table: Motif performance on YeastGenome TF's (Transfac + random) between
BioProspector and SVM.

'Top' = # hits of top motif PWM in yeastgenome
'1to 3' = hits in top 3 PWM

Remark: We note there are cross-validated multiple clusters (motifs) correlated with a
given TF ¢.



Finding binding motifs

Biological interpretation: Note there is only one motif (with small variations) per TF.

Additional motifs must represent targets of other TF's in the same gene 'transcription
module’, i.e., cascade of TF activations and resulting new TF productions.

Thus a multiple set ¢4, ..., ¢, of TF's involved in a single transcription module. Genes in this
module are activated in a coordinated way by the TF's.

Result: Confounding of motif finding - positive genes often share more than one TF.



Random forests

9. Random Forests




Random forests

Portraits of Statisticians

Same learning approach - use feature space
F' = string count space.

Again F' high-dimensional (around 4,000 dimensions if use 4-, 5-, and 6-mer counts with
pruning).

Note: Itis not necessary or useful to use all £-mers. Some just
confound the counts, e.g., simple but highly repetetive k-mers
such as AAAAAA. Thus pruning of k-mers is appropriate.

Best to remove these Iinitially.



Random forests

Have:

F>X =

Goal: again find significant features z; differentiating + and — examples.

Strategy: As usual - first form a classifier which predicts + and — ; then find what
variables (strings) it actually uses and make the largest difference.

Such strings are motif candidates.

Here: form k ~ \/g decision trees to form a random forest:



Random forests

Forest consists of decision trees 17, ..., T;..
Train trees on bootstrap samples from the dataset

D= {X’éa yz}z

Then provide new feature vector X.



Random forests

Classification
hX)~yeB

determined by a vote of the & trees (bagging classifier).
Advantages: accurate, easy to use (Breiman software), fast, robust
Disadvantages: difficult to interpret

How to combine results?

RF is a bagging algorithm: Take a vote of trees: majority rules



Random forests

General features:

If original feature vector x € R? has d features 4, ..., A,, forming feature space F :

¢ Random selection of m ~ \/E features {Aij};ﬂ:l made from all features A, Ao, ..., Ay;
the associated feature spaceis F;, 1 <k < K.

(Often K = #trees is large; e.g., K = 500).

¢ For each split in a tree based on a given variable, choose the variable by information
content, e.g.,

Al<l.3

y V\Ho




RF: information content

Information content for the above node N :
I(N) = |S|H(S) — |St|H(SL) — |SrIH(SR),

where
S| = input sample size; St r| = size of L, R subclasses of S
H(S) = Shannon entropy of S = — ) " p;logsp;
1==x1
with

D; = P(CJS) — proportion of class C; in sample S.

[can also split according to Gini index, another criterion]

Thus H(S) = "variablity" or "lack of full information" in the probabilities p;.



RF: information content

I(N) = "information from node N".

For each variable A;, average over all splits in all trees involving this variable to find
average information content H,,(S); use this to determine value of A;.

% Inlo

1 1 1 1 1 1
A6 A5 AT Al13 AD AL AITAI12 AR AI4ALS A2 A1T7 A4 ATOAL4 A3 AlS

(a) Rank all variables A; according to information content



RF: information content

(b) For each n; < n use only the first n; variables. Select n; which minimizes error:

Geurts, et al.



RF: Importance scores

Now use cross-validation to independently determine importances of variables:
Use RF variable importance score:

Each tree T; has 1/3 variables left ‘out of bag' (i.e., unused Iin
bootstrap training sample).

Use out of bag variables (different group for each tree) to test variable
Importance independently:

Add noise to each variable and check decrement in classification
accuracy.

The 'cross-validation' aspect of this sampling gives much better
accuarcy:



RF: Importance scores

Table - motif recognition for 26 Transfac
motifs in Maclsaac database

Topl | Top 3
RF 13 14
BioProspector | 11 13

Total: 26 TF's

Data: K. Maclsaac, T. Wang, D. B. Gordon, D. Gifford, G.

Stormo, and E. Fraenkel, "An improved map of conserved
regulatory sites for Saccharomyces erevisiae," BMC
Bioinformatics, 2006



SVM Ensembles

10. SVM Ensemble (SVME) - a new bagging algorithm

Ensemble (forest) of SVM - same bagging principle and variable
Imporance sampling principles.

Performance: Similar to RF but with differing strengths in different
sample elements.

Thus complementation of RF by SVME can be useful.
Here on same 26 TF's:

Topl | Top3
RF 13 14
SVME 10 15
SVME - Poisson Normalization | 15 16
BioProspector 11 13

Poisson normalization in addition to SVME works best.



SVM Ensembles

Poisson normalization: normalize k-mer counts z; to lie between O
and 1 by composing with cumulative distribution function of Poisson
distribution.

Based on Premise: There will be more uniform variation (in fact
close to a uniform distribution) on [0, 1] for the normalized k-
mer counts, assuming original counts are Poisson.



Further work
11. Further TF-gene binding work

As mentioned, functional components of DNA (e.g., TF binding sites) are conserved
among closely related species. Combination of conservation information into machine

learning methods is planned.

Plan also to include physical chemistry information on the promoters, including numbers
for promoter twisting, curvature, and melting temperature, all of which are correlated with

motif locations.



Further work

Reference:

Portraits of Statisticians: http://www.york.ac.uk/depts/maths/histstat/people/welcome.htm



