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Overview
I.  TF binding

Goal:



Overview

We are developing tremendous amounts of biological and DNA sequence information.  

Large numbers of genomic and proteomic projects are ongoing.

There is an of biological sequence data.EXPLOSION 

We need to understand basics:  how to determine if a string of DNA is functional?

And if functional, what is its function?

 Code a protein?
 Act as a regulatory site (initiating transcription of genetic information)?
 Act as a break point during genetic recombination?

These are very High Dimensional Problems, and often a decision (classification) must
be made.



Identification of transcription promoter motifs
The cellular process:

The transcription process:  RNA Polymerase moves down DNA molecule creating
 RNA copy:



Identification of transcription promoter motifs

Initiation of this process:



Identification of transcription promoter motifs
 



Identification of transcription promoter motifs
Figure:  Biology of DNA transcription.  CRM is cis-regulatory module, a molecular complex
can co-activate transcription once a TF arrives.

We are dealing with the first step - the start of transcription

1.  The Problem:

1.   Transcription factor (or a combination of them) attaches to DNA



Identification of transcription promoter motifs
Fig. 1:  Portion of chromosome string with TF attached to promoter region; this pattern repeated approximately 1000 times per

chromosome

2.  Signals RNA polymerase to start to copy DNA to RNA at a unique location nearby
( ).transcription



Identification of transcription promoter motifs
3.  mRNA copy of DNA is transcribed and outside necleus to ribosome

4.  tRNA (transfer RNA) matches amino acids to codons in mRNA.  Each amino acid has own
tRNA that binds only it.



Identification of transcription promoter motifs
5.  Ribosome carries out construction of the protein in the exact sequence coded by the RNA.

More succinctly:

DNA     pre-mRNA   mRNA     proteinÄ Ä Ä
Transcription Splicing Translation

Note:   involves transformation oftranslation



Identification of transcription promoter motifs
mRNA tRNA protein.Ä Ä

Human:  µ 25,000 genes  25,000 proteins  determination of cellular and body functionÄ Ä
and structure



Identification of transcription promoter motifs

Goal:

Develop statistical and math methods for identifying DNA locations where transcription
is initiated through attachment of transcription factors (TFs).

Important biologically, expensive experimentally.

Use statistical learning methods to identify new binding sites from examples based on
 DNA sequences of experimentally known ones.



Identification of transcription promoter motifs

The problem:

Of the 25,000 human genes over all 23 chromosome  
pairs, find promoters  and the locations on them which which ap3

specfic TF  attaches to.>

  The mechanism of TF-gene binding is hard to solve chemically, because of itsì
 complexity;

  Means for explicitly solving bindings (fig. 1) computationally still far offì



Identification of transcription promoter motifs

Left: DNA binding of GCM; right: binding of Fur (C. Ehmke, E. Pohl, EMBL,
 2005)



Identification of transcription promoter motifs

                Stanford University

Typical binding modes

  basic uncertainty principle trades off between gene-TF identification accuracies vs.ì
  throughputs.



Identification of transcription promoter motifs
More Detail:  Promoters

  is a region of DNA which attracts RNA polymerase for the initiation of1. Promoter 
 transcription.

  Promoter region of DNA contains 2. regulatory sequences which attract
 transcription factors (TF's)

3.  Regulatory sequences consist of inexactly repeating patterns (motifs).

  Motifs are very similar across species - they attract specific transcription factors.4.



Identification of transcription promoter motifs

Regulatory sequences

Goals:



Identification of transcription promoter motifs
  Decrease cost and increase speed of TF-gene binding and binding site identification.è

  Extend methodologies to other bioinformatic areasè

ì  (Modeling)  How should an integrated mathematical model of TF-gene interactions
look?

We are extending toolboxes for gene-TF information, focusing on information integration.

ì  (Applications)  How can such a model be used biologically to improve knowledge of
systems and pathways?

ì  (Ergonomics)  How to allow biologists to use such inferences?

Implications:

Gene-TF associations studied here can integrate information on biochemical pathways



Identification of transcription promoter motifs
 using machine learning methods

Protocol for organized replacement of experimental methods with mathematical and
 statistical ones.

2.  Approach

Problem:  find a pattern occuring in vectors in a high-dimensional space W

Here

W œ space of  sequences
DNA
RNA

Protein

Ú Þ
Û ßÜ à



Introduction

Initial goal:  discover a pattern-sensitive map

0 À W Ä œ ‘
where:

 œ Ö"ß "×

‘ œ real numbers

Ex:   For fixed transcription factor (TF) :>

 Given gene , let1

p œ œpromoter sequence of gene ...acttact...
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extrapolate

0Ð=Ñ œ
" 1 >
œ if  binds 

1 otherwise ;

from examples to determine which genes  are targets of .1 >

Or: we may want to extrapolate unknown  defined by0



Introduction

0Ð Ñ œp location of binding sites

(Binding sites occur as motifs of length 10 bases)µ

Such information traditionally experimental.

Can also be a classical learning problem -

Information about :0

   Data = H œ Ö=3 3 3œ"
8ß C ×

   where



Introduction

p3 3œ 1promoter sequence of gene 

C œ
 " 1 >
3

3œ if  binds with 
1 if not

Extrapolate

0Ð Ñ À W Ä Þp 

We seek new learning methods for such gene classification and transcription factor
binding site (TFBS) identification.

Thus problem is:

1.  Given fixed TF  and experimentally known gene set  which it targets (i.e., to whose> Ö1 ×3 3

promoters  it attaches).:3



Introduction

Can we extrapolate (e.g., through learning or Gibbs sampling) to computationally find new
targets ?1

2.  Given a known set of target genes , can we determine the  onÖ1 ×3 3 binding sites
promoters ?  Typically -mers ( -strings) with little variation, known as .: "! "!3 motifs

Here we consider problem 2

For a given TF , our goal here is to find genes it binds and its binding site motifs.>

Equivalently:  pGiven a known gene set  with promoter sequences  known to bindÖ1 × Ö ×3 3 3 3

>, what is an  set of 10-mers (DNA subsequences of length 10) in the setoverrepresented
Ö ×p3 ?

Rationale:  promoters generally have multiple copies of a motif if the are functional.



Introduction

This 'overrepresented set' of 10-mers should contain  of .binding motif >
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Position weight matrix (PWM):

Position number

E
G
K á
X

Ô ×Ö ÙÖ Ù
Õ Ø

0 0 0
.1 0 0
.6 .8 0
.3 .2 1

represent preferred binding motif for .>



Introduction

Typical test data:  often more than 1 motif per  
  sequence:

          
J. Liu

Q:  How to find overrepresented 10-mers?



Introduction

Current algorithms

ì  Largely optimization, taking genes known to bind specific TF, and identifying DNA
   subsequences (sequential typically of length 5 to 15)strings of base pairs 
   overrepresented in gene promoters.

ì   Typically use Gibbs sampling, with objective of maximal alignment of sequences in
   known binding genes.

ì  Machine learning methods for this are new

 These include: both types of TF problems described above (identifying genes and
  gene locations)

 Have capacity for processing high dimensional information-
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We consider:
   Support Vector Machine (SVM)è
   Random forests (RF)è
   SVM Ensembles (SVME)è

 All based on maps into feature spaces.

Plan:  head-to-head comparison of substring-based kernel methods with standard motif
algorithms.

  BioProspectorì
  AlignACEì
  MDSCANì

Claim:  SVME and RF can find subtle motifs (binding DNA patterns) in humans
(challenging task).



Introduction

Important aspect of both Gibbs and learning methods: ranking of promoter
substrings by statistical correlation with genes whose promoters bind to given TF .>



Introduction

Gibbs Sampling:

Optimally align all  which bind  (previous diagram).p3 >

i.e., score alignments of all (split) 12-mers (in this case) and find alignment with highestp  3
score with Gibbs sampling and simulated annealing [Lawrence, Liu, 1993].

Typical pre-alignment:



Learning appoaches

3.  Learning approaches

 Important advantage of learning methods for TF binding site location:

 Can use negative examples as well as positive examples, i.e., promoters which do and
  do not bind .>

 Machine learning approach:

 In species for fixed , obtain set of gene promotersf >

p p" 8ßá ß

 likely to bind  (experimental information, etc.).  Note for gene we have promoter> 13 

p p3 3œ Ð1 Ñ

 is the promoter sequence of gene .13



Learning appoaches

 In addition, find negatives, i.e., promoters  to which  probably does p p8" 87ßá ß > not
  bind.

 Use as for extrapolatinglearning examples 

0 À Ä œ Ö"ß "×P 

 on the space  of promoters  withP p

0Ð Ñ œ
" >


p pœ if  binds 
1 otherwise .

Key in learning methods:

 Feature map from genes  into feaures feature spaceF 1 − J œ Àx

F FÐ1Ñ œ Ð Ð1ÑÑ œ − Jp x



Learning appoaches

  gives relevant information now any learning algorithm can bex œ Ð1ÑF
  applied.

Feature space and learning methods now common in computational biology:

ì protein analysis [Leslie, et al.]
ì TF binding prediction [Holloway, Kon, et al.]
ì Motif finding [Vert, et al.].

Dogma of learning approaches for TF binding:

 1.  xChoose good feature space  with features J Ð1Ñ œ ÐB ßá ß B Ñ" 6

  depending on promoter of gene 1Þ

 2.  Re-define desired output



Learning appoaches

0Ð1Ñ Ä 0Ð Ð1ÑÑ œ 0Ðx x) 

  so it is defined on J

 3.  Learn  from training data0

H œ ÖÐ ß C Ñ× Þx3 3 3

 How to learn 0 À J Ä 

0Ð Ñ œ
" 1
"

x xœ if  corresponding to  is a target
otherwise

 from examples?

 Note without feature space,  would map promoter to , so0 C −p  

0 Ä ß:  T 1!!!



Learning appoaches

 where .T œ ÖEßKßGß X×

Remark:   The structure is wrong on this space; difficult to guess  from examples 0 W
(telephone directory problem).



String map

4.  The string feature map

                
Given list

string AAAAAA
string AAAAAC
string AAAAAG
string AAAAAT
string AAAACA
          

1

2

3

4

5
ã ã



String map

of strings of 6 base pairs.   Recall is the space of promoter DNA sequences.P 

Consider feature map with , with componentsx P x p xÀ Ä J , Ð Ñ œ − J

B œ =3 3# appearances of string  in promoter .p

Then  has 4,096 components  x − J % œ Ê J œ Þ6 4,096‘

Transferring  from  to ; now0 œ Ð Ñp x x p

0 À J Ä Þ

Thus:   maps sequence  of string counts in  to yes/no in .0 Jx U

With data set



String map

H œ Ö ß C ×x3 3 , 

seek function  which generalizes .0 À J Ä H

Easier:  find , where0 À J Ä ‘

0Ð Ñ  ! 0 Ð Ñ œ "à 0Ð Ñ  ! 0 Ð Ñ œ "Þx x x x if   if  " "



SVM approach
5.  SVM approach

Assume SVM kernel (similarity measure)  for string feature vectors OÐ ß Ñ ß − Jx y x y

Seek

0 À J Ä ‘

with  which predicts binding to gene  with 0 œ 0Ð Ñ 1 œ Ð1ÑÞx x x

0  ! 0  ! L À 0 œ ! J and  cases separated by hyperplane  in :



SVM approach

Geometry of  encoded in (nonlinear dot product).J OÐ ß Ñ œ †x y x y 

Obtain

0Ð Ñ œ OÐ ß Ñ  ,x x x"
3

3 3! .  

For linear dot product OÐ ß Ñ œ † Àx y x y

0Ð Ñ œ †  , †  ,Þx x x w x"
3

3 3! ´



Prior SVM work
6.  Prior SVM gene classification work

Spectrum (string) kernels - Vert, Noble, et al.:

J œ 5 5 5 œ &feature space of -mer ( -string) counts ( ).

FspectÐ Ñ œ %x vector of length &

with  position count of the  -mer.3 Ð Ñ œ 3 5>2 >2
3F x

Conservation information:  their feature vectors take phylogenetic conservation (string
conservation across species) into account.

Specifically:   given promoter  , consider alignmentp − T8 in S. cerevisiae
c − œ 8a bT& 8 aligned array of five (matching) promoter regions of length  from 5 related
yeast species.



Prior SVM work
Have 'marginalized' feature map

F Fmarg spect
3 3Ð Ñ œ Ðc h h c h"

h
hÑ:Ð l Ñ œ I Ð ÑŠ ‹Fspect

3

œ expected value of the spectrum kernel over possible common
  anscestoral sequences  of the set.h

Probability distribution of h c conditioned on  obtained with phylogenetic model from
[Tsuda].

Effect: reinforces -mers consistent across related species  (more likely  5
 to be functional);

More direct way:  first determine vector  which labels every site of promoter  byd pÐ1Ñ Ð1Ñ
whether it is likely functional or not based on conservation among species.



Prior SVM work
Specifically

. Ð1Ñ œ
" 3

3 œ if site  is conserved among 5 yeast species
0 otherwise .

Discretizing above leaves room for errors, but resulting noise reduction is useful.

Now [Vert] replace spectrum -mer) kernel by the 'relevant' kernel corresponding toÐ5
feature map

Frel
3 Ð ß Ñ œ 5 3h d count of 'relevant' occurrences of -mer 

œ # occurrences at sites all of whose locations are relevant.

for any string .h



SVM Classifiers
7.  SVM-based classifiers for targets of >

Before we locate motifs, we will classify genes (wrt binding/nonbinding by ).>

Given fixed TF :>

0 À ÄX ‘

x xœ Ð1Ñ œ 1feature vector of gene  

x − J œ feature space



SVM Classifiers
C œ " C œ " L À 0Ð Ñ œ ! À and  cases separated by a hyperplane x

 Recall for linear ,OÐ ß Ñ œ †x y x y

0Ð Ñ œ †  , œ Þ
 ! C œ "
 ! C œ "

x w x œ if 
if 



SVM Classifiers
 Procedure:

  1. Train SVM  

H œ ÖÐ ß Ñ×x y3 3 3œ"
87

   [use  positive ,  negative ].8 7x x3 3

  2.  Find optimal w x0 œ †  ,

0 1 > predicts new genes  which are targets of 



SVM classifier applications

Ex:  Human TF  WP1:

From 14 known positive genes have extrapolated much larger number of potential new
targets for investigation, and have some new implications for pathways.
New high reliability targets of the WT1 are genes

RNH1 IGF2AS CD151, , 

Relation to Wilms' tumor:

WT1 involved in Wilms' Tumor (8% childhood cancers).

Genes in significant loci include oncogenes and tumor suppressors -- candidates for
involvement in cancer progression

May explain some observed clinical and biochemical data.



SVM classifier applications

Example:  chromosomal region 11p15.5 (known in Wilms' Tumor)
New targets for WT1 ( ) here are tumor suppressors: Ÿ Þ!!&
RNH1 IGF2AS CD151, , and .

Other regions involved in Wilms' Tumor have new target predictions:

16q, 1p36.3, 16p13.3, 17q25, and 4p16.3.

Potential binding sites can be extracted using standard motif finding algorithms (e.g.,
Weeder)



SVM classifier applications



SVM classifier applications

Example:  Human TF Oct4 - new target predictions fit into WNT pathway:

 
Example:  Yeast TF's:



SVM classifier applications



Finding binding motifs

8.  Finding binding site motifs

Feature space string counts:J œ

FÐ Ñ œ œ

B
ã
B
ã
B
ã
B

EEEEEE

EXKGXK

KGGKXE

XXXXXX

p x

Ô ×Ö ÙÖ ÙÖ ÙÖ ÙÖ ÙÖ ÙÖ ÙÖ Ù
Õ Ø

"

3

4

;

 count of -mer B œ ' 33



Finding binding motifs

Better choice:

B œ ' 33 count of -mer  weighted by conservation

i.e., 6-mer  is weighted by  which determines level of conservation of averageQ - − Ò!ß "Ó
position in  in closely related species.Q

How to find binding sites?

Which 6-mers  best differentiate  and ?B  3

0Ð Ñ œ †  ,x w x



Finding binding motifs

w œ C  ! C  !optimized gradient vector between  and  cases



Finding binding motifs

Use

w œ œ f0Þ

A
A
ã
A

Ô ×Ö ÙÖ Ù
Õ Ø

"

#

.

 Largest components give primary direction of gradient; these are -mers which best   '
  differentiate  and .C  ! C  !

 Use SVM-RFE (recursive feature elimination) to iteratively reduce w to most important.  
  Typically cut number of features each time and re-calculate recursively.w 

For yeast:  approx. 50-300 positive examples per gene.

Sample selection repeated 20 times with different choices of negatives (genes with high :
  values in yeast ChIP-chip experiments) out of 600 available.



Finding binding motifs

In each SVM run numbers of positives and negatives are equal.

 Reduce from 4000 to 150 to 50 features .µ B3

  1.  a c t g t g
  2.  g t ca c t
  3.  t g a c t a

Best clustering:

   
a c t g t g

g t c a c t
t g a c t a



Finding binding motifs

Now:  'unrelated' 6-mer:

t c t t t a

Ä start new cluster.

Result:  Typically obtain 4 significant clusters, each with a probability weight materixµ
(PWM) representing probabilitity distribution of bases in each cluster position.



Finding binding motifs

  
           G. D. Stormo, DNA Binding Sites:  Representation and Discovery

             Bioinformatics 16 16-23,2000

Formation of PWM



Finding binding motifs

Clusters scored using combination of

  entropy scores = how atypical the string is and

  hitting scores = counts of above-threshold matches to PWM along
       candidate promoter .p3

Precisely hitting ratio score for a PWM is defined as

HR
# hits on positive genes
# hits on negative genes

œ

in a pair of positive and negative gene samples of same size.



Finding binding motifs

Clustering algorithm:   Assume  is current set of clustersG

Initial step: { , , } string -mer) set to be aligned, ordered by weight in W œ = = á ß = œ Ð5 Þ" # 8 w
G œ Þempty
Step 0: Form a new cluster from . Delete  from .= = W" "

Step 1: If empty, then quit. Otherwise, pick out the string  with the highest weight.W œ B − W
Step : Compute the scores of the string  from Step 1 w.r.t. each of the current clusters in . If2 B G
the highest score is greater than the addition threshold (threshold1 in the code), go to step 3
(addition step). If the highest score is less than the new cluster threshold (threshold2 in the code),
go to  .  Otherwise, go to  step step4 5
Step  (addition step): Add string  into the cluster producing the highest score, and delete  from3 B B
W W œ W  I. Let . Go to  .step 3'
Step 3' (deletion step):  Examine each element in the cluster being updated in step 3 by computing
the score of this element w.r.t. the PWM of this cluster.  If the score is smaller than the deleting
threshold, move this string back into .W
Step : Form a new cluster in  from string , and delete string  from .  Let . Go to4 G B B W W œ W  I
step 1.
Step : Move string  into the Exceptional set .  Go to step 1.5 B I

             Clustering algorithm
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Overall strategy:



Finding binding motifs

Typical results for 4 TF's:

Name #pos YeastGenome (Transfac) BioProspector   SVM

YBR049C 186
CGGGTRR AAGAAGARG
TTACCCG TACCCGG CYTCTTCTT

GG C

YDL020C 134 GGTG

CGGGTAA

CGGGTAA

GCAAA
GGCGGGTAA CC G
GTTTCCCCG TSGCCACCSG
GTTTCCCCG AAGAAGAGG

YDL056W 207 ACGCGT
TACATA AR YT
GCGACT GYYTTCTTS
GGTTGG SAAGAARRC

YDL10

GGTGGCR

ACGCGT

6C 69 SGTGCGSYGYG  
ATCCTCGAGTT CSCCACGTGGG
GACTCACAATC CCGCTGCAGCG
GCACTTACAAC CCCGGG

 

Table: A sample of yeast transcription factors analyzed.
 # pos is number of positive  examples for TF.  Selected motifs to the right are in order of priority.



Finding binding motifs

Example:  Results in yeast -

  BioProspector   SVM
Top 1 to 3 1 1 to 3

Ungapped (34) 15 16 16 24
Gapped (10) 4 5 3 5

Table:  Motif performance on YeastGenome TF's (Transfac + random) between
BioProspector and SVM.

 'Top' # hits of top motif PWM in yeastgenomeœ
 '1 to 3' hits in top 3 PWMœ

Remark:  We note there are cross-validated multiple clusters (motifs) correlated with a
given TF .>



Finding binding motifs

Biological interpretation:  Note there is only one motif (with small variations) per TF.

Additional motifs must represent targets of other TF's in the same gene 'transcription
module', i.e., cascade of TF activations and resulting new TF productions.

Thus a multiple set  of TF's involved in a single transcription module.  Genes in this> ßá ß >" <

module are activated in a coordinated way by the TF's.

Result:  Confounding of motif finding - positive genes often share more than one TF.



Random forests

9.  Random Forests

      



Random forests

             Portraits of Statisticians

Same learning approach - use feature space

   string count space.J œ

Again  high-dimensional (around 4,000 dimensions if use 4-, 5-, and 6-mer counts withJ
pruning).

 Note:  It is not necessary or useful to use -mers Some just   all 5 Þ
  confound the counts, e.g., simple but highly repetetive -mers  5
  such as .  Thus pruning of -mers is appropriate.EEEEEE 5

 Best to remove these initially.



Random forests

 Have:

J ® œ Þ

B
B
ã
B

x
Ô ×Ö ÙÖ Ù
Õ Ø

"

#

.

Goal:  again find significant features  differentiating  and  examples.B  3

Strategy:  As usual - first form a classifier which predicts  and ; then find what 
variables (strings) it actually uses and make the largest difference.

Such strings are motif candidates.

Here:  form  decision trees to form a random forest:5 ¸ .È



Random forests

Forest consists of decision trees .X ßá ß X" 5

Train trees on bootstrap samples from the dataset

H œ Ö ß C ×x3 3 3

Then provide new feature vector .x



Random forests

Classification

0 Ð Ñ ¸ C −" x 

determined by a vote of the  trees (bagging classifier).5

Advantages:  accurate, easy to use (Breiman software), fast, robust

Disadvantages:  difficult to interpret

How to combine results?

RF is a bagging algorithm:  Take a vote of trees:  majority rules



Random forests

General features:

If original feature vector  has  features , forming feature space x − . E ßá ßE J À‘.
" .

♦  Random selection of  features  made from all features , , ;7 ¸ . ÖE × E E ßá EÈ
3 " # .4œ"

7
4

the associated feature space is .J ß " Ÿ 5 Ÿ O5

(Often # trees is large; e.g., O œ O œ &!!ÑÞ

♦  For each split in a tree based on a given variable, choose the variable by information
content, e.g.,



RF: information content

Information content for the above node R À

MÐRÑ œ lWlLÐWÑ  lW lLÐW Ñ  lW lLÐW ÑßP P V V

where

lWl œ lW l œ PßV Winput sample size;       size of  subclasses of PßV

LÐWÑ œ W œ  : :Shannon entropy of "
3œ„"

3 # 3log

with

: œ TÐG lWÑ œ G Ws3 3 3proportion of class  in sample .

[can also split according to , another criterion]Gini index

Thus "variablity" or "lack of full information" in the probabilities .LÐWÑ œ :3



RF: information content

MÐRÑ œ R Þ"information from node "

For each variable , average over all splits in all trees involving this variable to findE3

average information content ; use this to determine value of .L ÐWÑ Eav 3

(a)  Rank all variables  according to information contentE3



RF: information content

(b)  For each  use only the first  variables.  Select  which minimizes error:8  8 8 8" " "

Geurts, et al.



RF:  importance scores

Now use cross-validation to independently determine importances of variables:

Use RF variable importance score:

 Each tree  has 1/3 variables left 'out of bag' (i.e., unused in  X3

  bootstrap training sample).

 Use out of bag variables (different group for each tree) to test variable
  importance independently:

 Add noise to each variable and check decrement in classification
  accuracy.

 The 'cross-validation' aspect of this sampling gives much better
  accuarcy:



RF:  importance scores

  Table - motif recognition for 26 Transfac
    motifs in MacIsaac database

Top 1 Top 3
RF 13 14
BioProspector 11 13

   Total:  26 TF's
           Data:  K. MacIsaac, T. Wang, D. B. Gordon, D. Gifford, G.
           Stormo, and E. Fraenkel, "An improved map of conserved
           regulatory sites for Saccharomyces erevisiae,"  BMC
           Bioinformatics, 2006



SVM Ensembles
10.  SVM Ensemble (SVME) - a new bagging algorithm

 Ensemble (forest) of SVM - same bagging principle and variable
  imporance sampling principles.

 Performance:  Similar to RF but with differing strengths in different   
  sample elements.

 Thus complementation of RF by SVME can be useful.
 Here on same 26 TF's:

Top 1 Top 3
RF 13 14
SVME 10 15
SVME - Poisson Normalization 15 16
BioProspector 11 13

 Poisson normalization in addition to SVME works best.



SVM Ensembles
 Poisson normalization:   normalize -mer counts  to lie between 05 B3

  and 1 by composing with cumulative distribution function of Poisson
  distribution.

 Based on Premise:  There will be more uniform variation (in fact
  close to a uniform distribution) on [0  for the normalized -ß "Ó 5
  mer counts, assuming original counts are Poisson.



Further work
11.  Further TF-gene binding work 

 As mentioned, functional components of DNA (e.g., TF binding sites) are conserved
among closely related species.  Combination of conservation information into machine
learning methods is planned.

 Plan also to include physical chemistry information on the promoters, including numbers
for promoter twisting, curvature, and melting temperature, all of which are correlated with
motif locations.



Further work
Reference:

Portraits of Statisticians:  http://www.york.ac.uk/depts/maths/histstat/people/welcome.htm


