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ealth of Sequence and Biochemical

W

Data

The amount of sequence data
available is rapidly increasing.

Over 1,

500 genome projects

are ongoing.

There is a need for techniques
that can rapidly determine

which sequences in a genome

are functional.




Biology: Transcription and
Reqgulatory Control
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Transcription: key to gene
expression
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DNA is transcribed into RNA and eventually proteins

Our concern: the first step - initiation of transcription



The transcription process

RNA Polymerase
runs along DNA
to produce RNA

Copy

Initiation of this
process occurs when
a TF binds to DNA at
the start of
transcription




The beginning: TF binds to DNA
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TRANSCRIPTION BEGINS



Basics of Transcription

1. Promoter is a region of the DNA which tries to attract RNA polymerase
so that transcription can be initiated. When cell transcribed it is expressed
as a protein.

2. Differences between cells are determined by which proteins they
produce, which are determined by which genes are expressed.

3. Promoter region of DNA contains regulatory sequences which attract
proteins called transcription factors (TF). The presence of these proteins is
required for transcription with RNA polymerase to begin.

4. Regulatory sequences consist of inexactly repeating patters (motifs)

5. Motifs stand out as highly similar patterns across species - their function
is to attract very specific transcription factors.



B Regulatory sequences on the
DNA attract the TF
B Recurring attracting sequences
are motifs or consensus sequences

Regulatory sequences

GRE Consensus Sequence

MMTY TGGTTTICGTATCAAATGTTCTIGATCTC
MMTY TTTATGGTTACAAACTGTTCTTAAAAC
hGH CCTTTGGGCACAATGTGTCCTGAGGGC
MSY CATCTGGGGACCATCTGTTCTTGGCCC
MSY TTCAGCTGTTCCATCTGTTCTTGGCCC
WMT  GCACCCGGTACACTGTGTCCTICCCGCT
iTO CTCATATGCACAGCGAGTTCTAGTGACG
Jo TGCTCCCTTTCAITGATGTCCTIGGCCCA
TAT TACGCAGGACTTGTTTGTTCTAGTCT1
TAT  CTCTGCTGTACAGGATGTTCTAGCTAC

- =

FIGTACANNNTGTTCT

MMTY = mouse mammary tumor yirus
hGH = human growth homone

MSY = murine sarcoma virus

hMT = human metallothionein

TO = tyrosine oxidase

TAT = tyrosine aminotransferase



Transcription Factor Binding

Binding between DNA and transcription factors
(TF’s) is hard to predict chemically

Goal: Fora given TF in yeast or human, determine
which genes’ promoters it binds to, and where.



Summary

High throughput technologies, including ChlP-
chip data, are rapidly increasing experimental
iInformation about transcription factor binding to
DNA

|dentification of TF binding sites in the genome
remains difficult and incomplete

Machine learning approaches have potential to
supplant difficult experimental methods

SVM methods studied here have sensitivity of
/0% and positive predictive value of 90% on the
average.



Summary

* Applications to inferences on biochemical
pathway information are given



Binding Site Representation

| ATGATGATCCGATGATCCGATCGAGCTAATCGATCGATCCGATGATCGATCGAGCTAATGATGATCCGATGATCGATGAG

l l l downstream

upstream

regulatory motif

GCN4 binding sites _ g . g . .
AGACCAA PSSM = Position Specific Scoring Matrix
GGACGCA

TGACTCA

TGACTCA Probability matrix for GCN4

TGACTCA pos 0 1 2 3 4 5 6
TGACTCA A 0059 0036 0927 0029 0044 0101 0.697
'TGAC$C‘~ C 0017 0022 0008 0662 0027 0827 0043
TGACTCA T 0908 0077 0054 0058 0911 0043 0214

TGACTCA g . -
TOACTOA G 0015 0866 0012 0251 0018 0029 0.045

TGACTCA

TGACTCA ‘x
TGACTCC

TGASTCA
TGAGTCG

TGAGTCT Sequence logo

TGAGTCT

TGAGTCT
TIGTGTGT

*G. D. Stormo, DNA Binding Sites: Representation and Discovery., Bioinformatics 16 16-23,2000
TGAsTCa *W. W. Wasserman and A. Sandelin, Applied Bioinformatics for the Identification of Regulatory
Elements, Natue Reviews Genetics 5 276-287,2004.



Support Vector Machines

Assume a fixed species § (e.g. baker's yeast, s. cerevisae) has
genome ¢ (full set of genes).

Gene ¢ begins transcription (for protein production) when a
transcription factor (TF) t (a protein) chemically binds to it.

Question: given a fixed TF ¢, which genes g € ¢ does it bind to?

Chemically hard to solve -



Machine learning approach

Consider training data set
Do = {(gi, yi) }iz1,

where g; e Gandy;, e B={-1,1}.

Assume

)l if g, attaches the TF
9= 3 _1 otherwise '

How to learn f; : G — B from examples?

First define g € G formally by its promoter sequence



Machine learning approach

p=p(g) =ACGGTCTGGT..CGT

= DNA sequence of promoter region of gene

DN4

&

promoter gene
region

(promoter region is where TF will attach; in yeast it has ~1000
bases).
Effectively

fO: 41000 ~ B
with A = {4.G,C, T}



Use of feature maps

Remark: If we map A into numbers (e.g., ¢ = 0211323113...213),
fo difficult to guess from examples D.

Feature maps

A solution: map G into a space where it's easier to classify.



Sample feature maps

Example: Feature map

D1(g) = x(p(g)) = ;{22

| £104 |

with z; = # hits in p(g) by PSSM for TF ¢, (e.g., from a list of 104
TF's for yeast).

Example: Microarray expression data for gene g

¥, (g) = x = vector of expression levels of g in 25
microarray experiments



Sample feature maps

Example:
$3(g) = x(p(g)) = vector of string counts in p(g)

Consider ordered list

string1 | AAAAAA
string2 | AAAAAC
string3 | AAAAAG
string4 | AAAAAT
stringd | AAAACA

of all strings of 6 base pairs.



Sample feature maps

Note x = X(g) has components:
r; = # appearances of string 7 in (upstream region of) g.

X has 4° = 4,096 components; F = R*09,
We thus have a set of feature maps ¢, : G — F; = feature spaces

(]:)_2-_(9) = X; € Fz

For yeast, we use i = 26 such feature maps (some of them highly
discriminatory).



Concatenation of feature spaces

Now form full feature space as direct sum:
le.,

X = (x1?x2?'*' &xr’c)



Concatenation of feature spaces

Note: The kernel (thus geometry) of the full feature space F'is the
sum of the individual kernels of F;:

I{(xa y) — Zl{i (xia yZ) ;

In particular, combining information contained in a collection of
kernels K;( -, - ) is obtained from just taking their sum.



Basic SVM setup: the discriminating function f

With data D, can we find function f; : F' — B which generalizes
above examples, so f,(X) = y (i.e., correct prediction) for all feature
vectors x7?

Easier: find f: F — R where
fFX)>01f f1(X)=1; f(X) <0 If f1(x)=—1.



Basic SVM setup: the kernel

Now define geometry of space F' by defining dot product:

Assume we are given any kernel function K(x,y) which is positive
definite and symmetric in X. .

We then define geometry of F' by defining the nonlinear dot product
X-y=K(Xy).

Then apply SVM algorithm using geometry induced by K to find
optimized choice of f (here X; are examples)

FX) = oKX, X)+b=» K(W,X)+b.



Basic SVM setup: the kernel

Linear kernel case: K(x,y) = x-y (linear dot product). Then
f(x) = Zaiiﬁ X+ b= (Za&) X+b=wW: -X+b.

Final classification rule: f(x) > 0 = y = 1 (TF binds gene);
f(x) <0 = y= —1(TF does not bind).

Learning from training data:
:\-f — (f(xl) e :f(x?l)) — (ylz R y'n..)-
Consider separating hyperplane H : f(x) = 0:



Basic SVM setup: diagram

Geometric interpretation

Recall:

f(X) =wW-X+b;

Fig 2: SVM geometry (2 dimensions)



Feature spaces

MOT: Motif hits in S.cerevisiae

CON: Motif hits conservation 18
organisms

PHY: Phylogenetic profile

EXP: Expression correlation

GO: GO term profile

KMER: K-strings — 4,5,6-mers

S1:. Split 6-string 1 gap kkk _kkk




Feature spaces

S2:

Split 6-string 2 gaps kkk  Kkkk

S3:

Split 6-string 3 gaps kkk  Kkk

S4:

Split 6-string 4 gaps kkk Kkk

Sh:

Split 6-string 5 gaps kkk KkK

S6:

Split 6-string 6 gaps kkk KK

S7:

Split 6-string 7 gaps kkk K

Kk

S8:

Split 6-string 8 gaps kkk

kKkk




Feature spaces

MO1: 6-string with 1 mismatch (count 0.1)

MOS5: 6-string with 1 mismatch (count 0.5)

ENT: Condition specific TF-target correlation

BIT: Nucleotide sparse binary encoding

CRV: Promoter Curvature prediction

HC: Homolog Conservation

HYD: Hydroxyl Cleavage




Feature spaces

KPo: Kmer median positions from start

KPr: Kmer Probabilities (-log pval)

MT: Promoter Melting Temperature-20bp window

DG: Promoter Melting Delta G profile-20bp win

BND: Promoter bend prediction




Feature spaces

Many of these methods are not so reliable
on their own, but can combine using
statistical inference to yield a more
powerful prediction scheme.



Promoter Sequences

|

Motif Detection using Position
Specific Scorina Matrlcess for
163 —

|

Overrepresentation Conservation
(Degeneracy) Analysis
Analysis

—
|

Using 18 Genomes

Count motifs for each
TF-target pair

Selection of
Features:
Rationale

Expression
Correlation Analysis

ﬁ

1 2 3 4 5..1011
Experiments



Degeneracy: Repetitive TF Binding
Sites

@ P(True|2 hits) = 2 - P(True|1 hit)
5 % Having more than one detected
/ binding site for a TF in the
upstream region of a gene
i— [z iIncreases the likelihood that the
TF truly binds the gene.
Some transcription factors have a
preference for repetitive motifs.
Repetitive motifs
Tect
| [ wsc2
Mbp1
] [_mMmcD1
GIn3
m I DAL4

This is Supplementary Table 5 From C. Harbison, E.
Fraenkel, R. Young and e. al., Transcriptional Regulatory
Code of a Eukaryotic Genome, Nature 431 99-104,2004.



S. cerevisiae
I [ 1

C.elegans
I [ | q

S. mikatae

I [ | q
H. sapien

L[ | q

M. musculus
I [ | I_-I>

Conservation

Conservation of a
TF binding site In

several
orthologous

upstream regions

Increases the
likelihood that a
potential site is
True site

' ] — TF binding

site

18 genomes

Link: Shadowing

Genomes

S.cerevisiae A.thalania D.melanogaster
S.pombe R.norvegicus P falciparum
H.sapien C.elegans A.gambiae
N.crassa M .musculus S.paradoxus
S.bayanus S.kudriazevii

S.mikatae S.castelli

S.kluyveri M.grisea




Expression Analysis

Two methods can be used to

Expression Correlation Analysis

1 2 3 4 5 6 7 8
...1011 Experiments

explore expression relationships:
1. Transcription factors that are
highly correlated with potential
targets are more likely to regulate
those targets.

2. Pairs of genes with highly
correlated expression are more
likely to be regulated by the same
TF.



SVM Algorithm

» 26 feature spaces lead to 26 kernels
« SVM forms hyperplane

(X)=w-x+b=0

« Kernel

(generalized inner product)



Kernel Choices

Kernel Parameters Description
linear none K(x,y)=x'y
polynomual poly degree d | K(x,v)=(xy+1)”
Gaussian radial basis function | 6 —|x-v|*
(RBF) K(X,y) = exp :
200
Gaussian G 1 Cx2iy?
2
K(X.'JF) T 2 € 2o




Probabilistic Intepreptation (Platt)
* Rank the data by
P(vi =1| w - x; + b)

= posterior probability of positive classification
given distance of x from hyperplane.

Result: empirically based confidence levels given
to SVM predictions.



Overall Algorithm

Classifiers for each TF Choose best kemels and
Genomic Datasets from each Dataset using a combine them using a
set of kemel functions weighting function

Filter sets using

M hyper-geometric test
linear Choose kemel with Combi
radial basis|  highest F1scorein i ombine top
hd S 2% ¥ kemnels for each TF
Gaussian each dataset —
. kernels per TF. one based on F1 score
polynomial ; chpd )
° Cross validation to ot €& ataset.
. o choose best parameters
Phyloggnetnc TF104 for each kemel type _
Profile
Expression
2 10816 classifiers—— 2704 classifiers 104 classifiers
° 1 for each TF
26 Datasets

Synthesizing a single classifier from various data sources



Under-
sample
negative set

Trainin E Feature Reduction
g Set and Classifier

——Constructionr——
features ﬁ *SVM-RFE to
: select top 1500 Final
: leave-one-out S atr's —| Training §  Single
—Se——i  cross SVM on Classifier 3 Accuracy
@ validation selected :  Estimate
i loop features. : .
ﬂ evaluate .
on test set .
‘lllllllllIEII-I;qsiinllllllllllllllllllllll Iﬁﬂiﬂg-é---lll:
1 | g Set Set |:
Repeat validation with new 100X
resampling of negatives. Average Average
the Accuracy estimates over 100 Accuracy

ranaate



Weighting schemes for kernel
sums

* Weighted sums of kernels are taken:

26
K(Xv Y) — ZlOész (Xa Y)

Scale with a; =

»Scaled F1 score

»Square of scaled F, score
»Squared tangent of F, score

(note latter have effect of emphasizing
higher and better F, values)



Kernels: accuracy scores
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Summary of accuracy

» Best single kernel has sensitivity of .71
and PPV of .82

« Squared-tan weighting gives sensitivity .73
and PPV of .89



Fraction of TF's for which method is significant

Summary of accuracy
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F1 Scores: Random vs. Genomic
Data

a Normal Random Data F1 Scores b 26 Method Combination F1 Scores
60 T T + + 60 : . . -
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Sensitivity vs. Example Size

26 Method Combined Tangent Weight
Sensitivity vs TFs with increasing # of Positives
1 T I I I I I I T T I
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TFs sorted by increasting positives ->



SVM vs. PSSM Scan

PSSM vs SVM for 104 Transcription Factors

1 . .
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Implications for Pathways: GCN4
and Amino Acid Biosynthesis

L-aspartate

Targets of GCN4 in an amino-

........................................

 L-aspartate 4-P-transferase acid biosynthetic pathway
| e | Prevousy woun e
L-aspartyl 4-P regulated by GCN4
- New Predictions
Reaction in
v " metabolic pathway

L-aspartate-semialdehyde — — » Transcriptional

_ regmation

.............

OSSR ~ homoserine ) '
- .............. ? Met4 §

homocysteine

v

O-phospho-L-
homoserine

.............................

%threonine synthase
THR4 4

............................

L-threonine

O-Acetyl-L-
homoserine

tetrahydropteroyltri
-L-glutamate

L-methonine



Implications for Pathways: RAP1
and Glycolytic/TCA Cycle

B-D-glucose
hexokinase Il HXK2

lysis
. glucose-6-phosphate
ntation glucose-6-phosphate isomerase
PGI1
fructose-6-phosphate
Phosphofructokinase 1 & 2
PFK1 PFK2
fructose-1,6-bisphosphate
Triosphosphate aldolase FBA1
isomerase TPI1
mal:a e glyceraldehyde-3-phosphate ; - dihydroxy-acetone-
TDH1 Idehyde-3-phosphat phosphate
dehydrogenase TDH3 e
3-phospho-D-glyceroyl-phosphate
PYK2 2-phosphoglycerate kinase PGKl]

3-phosphoglycerate
phosphoglycerate mutase GPM1 ]

2-phosphoglycerate
[enolase ENO1 ENO2 ]

phosphoenolpyruvate
[ pyruvate kinase CDC19 ]

pyruvate
%2 u [ pyruvate decarboxylase PDC1 ]
acetaldehyde
/ Nalcohol dehydrogenase ADH4]

ADH1
acetate \ ethanol ADH2
ADH3
ADH5

alcohol dehydrogenase
(major cytoplasmic) ADH6




Degeneracy Significance

09

Probability

e
[

— Pk |T)
—P(T | k)

01

Degeneracy: # of Repeated Binding Sites

Degeneracy 0 means not detected by
Motifscanner



Probability
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Conservation Results
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Genomes:

P2
P3
Ps
P6
S. eerevisiae (SC) P7
Pl P3
FLOE2 SRS BS P6 P5 B. subtilis (BS)
PS5  P6 P7
£ coli (EC) H. influenzae (HI)
\ | Profile Clusters:
N
- [ pa 1 o0 o]
Phylogenetic Profile: |
EC SC BS HI P2 1 10
Pl 1 0 il : t 9
P2 1 L0 _>
P3 o 1 1 [P1 1 0 1} Ps 11
P4 1 0 0
P5 | S = T
2
i L P6 01 1
P7 110
NV
Conclusion: P2 and P7 are functionally linked,

P3 and P6 are functionally linked




Conservation

Degeneracy

Genel | Gene2 | Gene3
Motif1 | 4 0
Motif2 | 5 0
Motif3 | O 2
Phylogenetic Profile
Genome1 | Genome2 | Genome3
Genel | 1 1 1
Gene2 | O 0 1
Gened | 1 1 0
Expression
Exp1 Exp2 Exp3
Gene1 0.32 0.001 [ 0.5
Gene2 -0.2 0.04 -0.001
Gene3 -0.6 0.4 -0.3

Gene1 | Gene2 | Gene3
Motif1 2 1 2
Motif2 0 0 1
Motif3 1 0 1
Dot
products
—

Kernel
Matrices

e

e

T

M Tty
Ty J"‘ﬁ:‘“‘m I

Combined
Kernel Matrix

SVM

—> 4/



0.95

0.9

0.75

0.7

0.65

Accuracy vs. Number of Features for YIRO18W

50 1

00 250 500 750

1k 1.5k 2k 2.5k 3k 3.5k 4k 4.5k 5k 55k 6k 6.5k 7k
Number of Features




K-fold Random
Resampling

= Random Subsampling performs K data splits of the dataset
e Each split randomly selects a (fixed) no. examples without replacement

e For each data split we retrain the classifier from scratch with the training
examples and estimate E; with the test examples

Total number of examples

a »

Test example
/ p
Experiment 1 A

Experiment 2

Experiment 3

= The true error estimate is obtained as the average of the
separate estimates E;

¢ This method is significantly better than simple split sample techniques

E 1KE
_Rg‘i

P Intelligent Sensor Systems
(TG g Ricardo Gutierrez-Osuna

Wright State University



Some human target predictions

WT1 - a TF involved in Wilms' Tumor - makes up 8% of
childhood cancers.

SVM predictions for WT1 targets suggest new Wilms tumor
models.

Genes in significant loci include several oncogenes and
tumor suppressors which are candidates for involvement
IN cancer progression.



Some human target predictions

Example: chromosomal region 11p15.5
- known to be involved in Wilms' Tumor.

Newly predicted targets for WT1 are statistically enriched (.0005)
for genes falling in this region.

Three of these are possible tumor suppressors, i.e., RNH1,
IGF2AS, and CD151.

Other regions known to play a role in Wilms' Tumor also contain
new tar)get predictions (16q, 1p36.3, 16p13.3, 17925, and
4p16.3).

Anti-apoptotic (anti-programmed cell death) effects of WT1 are
possibly related several new target genes, including BAX and
PDE4B - may help mediate the effect.



Some human target predictions

Motif discovery used for new candidate WT1
binding motif:

Potential Binding sites for WT1

A Previous consensus sites C Weeder Top Motif
GCGGGGGCG e
GCGTGGGAGT
GNGNGGGNG 24
GNGNGGGNGNS P
[ — ~ e - w ©
B Highest ranked k-mer * Second Motif
SVM: CGCG 2
Oligo-analysis: CGCGGG
Weeder best 6-mer: CGACCG £1
Weeder best 8-mer: CGCGTCGA
Weeder best 10-mer: CGTCGCGTCG | /@ '@ " —_ __=—
5 3

Fig. 3 - Wt1 target motifs:
(A) From literature

(B) Rankings of candidate motif strings as determined by application of SVM to a
string feature space str, and from another oligo-analysis.

(C) Top ranked motifs using the Weeder algorithm on SVM-based rankings.
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Machine Learning Predictions:

http://visant.bu.edu/



