
Learning Good Representations
for Learning, Part II

Summary:

1.  Representing images:  Edges  (with Ben Allen)

2.  Representing general features:  incorporating prior
 knowledge (Charles DeLisi, Yue Fan)



Invariance (e.g. translation-invariance) in representating
images is good for many purposes, including

Image Compression:  fewer numbers needed to store
image

Image Classification:  fewer numbers to confuse
classifier (in identifying image)!

So good compression and good classification share an
important common goal: fewer numbers to represent
the image.



Widely studied way to store and analyze images with
fewer numbers:  keep only line/edge information:

     Rea Gardner, New Yorker



Now-classic method (1980's):  edge detection

Image:



Multiscale edges:

     N. Saito, http://www.math.ucdavis.edu/~saito/talks/ucdmathbio.pdf

Multiscale edges:



  
      S. Mallat
Mallat's edge-based compression algorithm



Mathematically - can blur image by convolving with Gaussian:
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Technically, find edges as zero crossings of
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edge locations: multiscale zeroes of  (various scales ).
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Upper left: original image; upper right reconstructed image (S.

Mallat, 1992)



Stephane Mallat (1992) reconstructed images from edge
information using (instead of Gaussian function)

1ÐBÑ œ Þcubic B spline

Marr conjecture:  an image is uniquely determined by its
Gaussian multiscale edges.

1 dimensional version: slices of images (like functions
above) are uniquely determined from their edge
information.



Some significant work:
ì 0ÐBÑÑLogan (1977)   (band-limited images 

ì Curtis, Shitz, Oppenheim (1987)  (band-limited signals
0ÐBÑÑ

ì 0ÐBÑYuille, Poggio (1987);  polynomial signals in
multiple dimensions; less edge information needed

ì Hummel, Monoit (1989)  (knowledge of gradient of
0ÐBÑÑ

ì Meyer (1994)  (counterexample -false if infinite extent)



A 1-D image intensity map and its Gaussian edges (of blurred
function); blurring levelscale œ



Theorem:  Assume a signal  representing the0ÐBÑ
intensity (brightness) of an image at point .  AssumeB
we know only the edges of  for a fixed infinite0ÐBÑ
sequence of blurring scales  (not converging5 5" #ß ßá
to 0).  Then this sequence of zeroes

(a) uniquely determines  if it decays exponentially at0ÐBÑ
infinity, i.e., if .l0 ÐBÑl Ÿ G/5lBl

(b)  does not uniquely determine generally if it0ÐBÑ
decays at most algebraically, i.e.,  forl0 ÐBÑl   GlBl6

some .6  !
(c) However, if the scale sequence 53 Ä !

(i.e., the zeroes generally do determine0 Ä 0 xÑß53 not 
the image  uniquely for decay rate of .0ÐBÑ 0any 



Conclusion:  knowing edges of a blurred image for a0ÐBÑ
any sequence of blurring levels determines 0ÐBÑ
uniquely, unless the blurrings approach 05 5" #ß ßá
(i.e. almost no blurring at all).

Conclusion:  An image is determined by its multiscaleÐ Ñ
edges if the image intensity decays exponentially0ÐBÑ
(e.g. is bounded in extent!).

Conclusion:  There are images which decay
algebraically arbitrarily fast (i.e., like l0 ÐBÑl Ÿ GlBl6

for any  but which are not determined by their6  !Ñ
edges.



Extends Meyer result showing that non-decaying (infinite
extent) functions are not determined by their edges.

Proof of Theorem:  For our one dimensional case write
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Idea: First term  of series represents 'monopole+ ÐBÑ!$
moment' of , i.e., for large blurring , to first order0 5

+ ÐBÑ‡1 ÐBÑ ¸ 0ÐBÑ‡1 ÐBÑß!$ 5 5

i.e., for very large blurrings , this approximates the5
Gaussian function  which looks like0 ÐBÑ œ 0ÐBÑ‡1 ÐBÑ5 5



Second (first derivative) term  of series gives+ ÐBÑ"
Ð"Ñ$

next order of approximation -  includes+ ÐBÑ‡1 ÐBÑ"
Ð"Ñ$ 5

'dipole moment' term to the blurred ,0 ÐBÑ5

asymptotically of the form (derivative of Gaussian)



Quadrupole moment term:



If ,5 Ä _
ì  Each term  in series for  has a different+ ‡1 ÐBÑ 05

Ð5Ñ$ 5 5

rate of decay

ì  Each  in turn corresponds to one term in an+5

asymptotic series giving rate of convergence of the
edges of  toward an asymptote as .0 Ñ Ä _5 55

ì  This convergence rate of the zeroes determines +5

and thus  through solution of the moment0ÐBÑ
problem.



Caveat:  the edges of the 'sharp' blurrings  as0 ÐBÑ5

5 Ä ! 0 are  sufficient to determine ; an infinite setnot
of blurrings  away from 0 is needed!53



Learning Good Representations for Classifying
Cancer Subtypes

(with C. DeLisi, Y. Fan, S. Kim, R. Raphael)

Below:

I.  Machine learning approaches

II.  Applications to  Cancer



1.  Machine learning methods in computational
biology

Example:  microarray-based inference

A microarray produces approximately 20k biomarkers 
describing a tissue sample:



Machine learning methods



Machine learning methods



Machine learning methods

Result:  for each subject tissue sample , obtain feature=
vector

FÐ=Ñ œ œ ÐB ßá ß B Ñx " #!ß!!!

œ vector of gene expression levels



Machine learning methods
If this is an ovarian cancer tissue sample:

Questions:

(a) What type of cancer is it? 

(b)  What is prognosis if untreated?

(c)  What will be the reaction to standard
chemotherapies?



Machine learning methods
Goals:

1. Differentiate two different but similar cancers.

2.  Determine the future course of the cancer

3.  Determine what chemical agents the cancer will
respond to

4.  Understand genetic origins and pathways of cancer



Machine learning methods
Basic difficulties:  few samples (e.g., 30-200);  high

dimension (e.g., 5,000 - 100,000).

Curse of dimensionality - too few samples and too many
parameters (dimensions) to fit them.



2.  SVM as a tool

Method:  Support vector machine (SVM)

Procedure: look at feature space  in which  lives,J Ð=ÑF
and differentiate examples of one and the other
cancer with a hyperplane:



SVM as a tool

Train machine:  take  subjects with different8 œ &!
responses to a particular therapy , and locate theirT
feature vectors in the space , labeling them redJ
(unresponsive) or green (responsive).



SVM as a tool

Find separating hyperplane, and use this plane to
separate feature vectors of future subjects into
'responsive' and  'unresponsive'.

There are a number of other machine learning methods
which are able to discriminate feature vectors FÐ=Ñ
with respect to prognosis, response to therapies, etc.

Data obtained in collaboration with TCGA (the Cancer
Genome Atlas).

3. The principle:  more is more



Machine learning
Past:  too many variables spoil the statistics;  < 50

variables
 was typical requirement

Present:  more is better

Machine learning allows massive integration of
relationship information:



Machine learning
Relationship information on a gene level:

  protein-protein interactionsì
  co-expressionì
  gene ontology relationshipsì
  pathway correlationsì
  epigenetic information (methylation,ì
      phosphorylation)

Machine learning in study of cancer allows seamless
combination of many different data types.

Method:  kernel matrices



Machine learning

Kernel trick:  incorporate relational information into a
kernel matrix:  for genes  and :1 13 4

K34 3 4 3 4œ OÐ1 ß 1 Ñ œ 1 1'closeness' of  and 

as measured by, e.g.,

   protein-protein interactionsè
   coexpressionè
   gene ontologyè
   pathway connectionsè

Each type of gene relation gives a different kernel matrix.



Machine learning

To integrate information in kernel matrices ,KÐ"Ñ

K KÐ#Ñ Ð8Ñßá ß , we add them:

K K Kœ á  ÞÐ"Ñ Ð8Ñ

incorporates all of these measures into one.

No matter what the source of prior information in kernel
matrix , it is automatically integrated with otherKÐ3Ñ

sources by kernel addition.

Information types (for example, in The Cancer Genome



Machine learning
 Atlas, TCGA) contain:

  Gene expression (microarray)è
  Single nucleotide polymorphism (SNP) informationè
  è Methylation, epigenetic information
  Gene copy numbersè
 micro-RNA (miRNA) dataè



Noisy Biomarkers
4.  Problem:  biomarkers are noisy!

Microarray for example is non-self-replicating:



Noisy Biomarkers
Affymetrix Agilent Amersham Mergen

Human liver vs. human heart: 3904/22,283 (18%)
Human liver vs. human liver: 3875/22,283 (17%)
Human heart vs. human heart: 4026/22,283 (18%)

Human liver vs. human heart: 6963/14,159 (49%)
Human liver vs. human liver: 5129/14,159 (36%)
Human heart vs. human heart: 1204/18,006 (6%)

Human liver vs. human heart: 8572/11,904 (72%)
Human liver vs. human liver: 2811/11,904 (24%)
Human heart vs. human heart: 3515/11,904 (30%)

Heart replicates Heart replicates Heart replicates Heart replicates

Heart:Liver Heart:Liver Heart:Liver Heart:Liver

Human liver vs. human heart: 2595/9970 (26%)
Human liver vs. human liver: 318/9778 (3%)
Human heart vs. human heart: 454/9772 (5%)



Noisy Biomarkers
How to clean up the noise?  Use the same methods as

denoising functions in Euclidean space.



Noisy Biomarkers

Figure:  smoothing of gene copy number arrays using wavelet denoising.
Huang, et al. http://www.biomedcentral.com/content/pdf/1471-2164-9-S2-S17.pdf



Noisy Biomarkers

What methods help in denoising functions on Euclidean
spaces?

1.  Local averaging (Haar wavelet denoising) - above

2.  Smoothing using convolutions   0ÐBÑ Ä 0‡1ÐBÑß

 where  is say a Gaussian kernel.1ÐBÑ œ /"

#
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3.  More generally, smoothing using kernel regression:
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Noisy Biomarkers
4.  Spectral smoothing - filtering high spectral

components of a function:



Noisy Biomarkers

http://www.scilab.org/product/man/DesignEllipticFilter.html



Noisy Biomarkers

and many other modes.

Rapaport, Vert, et al. (2007) have used spectral methods
for denoising gene expression arrays.



Euclidean denoising on gene space
5.  How to transfer Euclidean space methods to gene

space?

One can use similar methods for denoising gene
expression arrays, and more generally machine
learning (ML) feature vectors.

Gene expression arrays:  Given a gene expression
feature vector , we can x œ ÐB ß B ßá ß B Ñ" # 8 view it as a
function on its indices  K œ Ö"ß #ßá ß 8× or equivalently
the genes 1 ßá ß 1 Þ" 8



Euclidean denoising on gene space
Purpose:  if index set  has a distance measure (e.g. aK

metric or network structure), and thus a notion of
when two points  in  are 'close', then we will try to3ß 4 K
use this metric structure similarly to Euclidean metric
to eliminate noise.

In Euclidean space denoising of a function  is done0Ð Ñx
using continuity, i.e.,

l0 Ð Ñ  0Ð Ñl .Ð ß Ñx y x y small when  is small.



Euclidean denoising on gene space
In ML denoising can be done when we expect

l0 Ð3Ñ  0Ð4Ñl .Ð3ß 4Ñ ß small when  is small

where  is a distance measure on indices  (e.g.. 3ß 4
genes)

Genes in a network: if index  represents gene  and 3 1 43

represents gene , and if nodes  and  are close in1 1 14 3 4

the gene network, we believe their expressions  andB3

B4 should be close to each other.



Euclidean denoising on gene space
Note this is an unsupervised method which can

regularize feature vectors for any classifier (e.g., SVM,
random forest, k-nearest neighbors, etc.)



Formalities
6.  More formally:

Given distance structure (e.g., metric or network) on the
index set  (e.g. genes) of a basis for a feature spaceK
J − J, so that  isx

x œ

B
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with index .K œ Ö"ß #ßá ß 8×



Formalities
View features  as a function on theB œ 0Ð3Ñ œ 0Ð1 Ñ3 3

indices .3

Model features (e.g. gene expressions)

B œ 0Ð1 Ñ œ 0 Ð1 Ñ  Ð1 Ñß3 3 " 3 3%

where  represents noise  and  is the 'true'%3 " 3ß 0 Ð1 Ñ
expression signal.



Formalities

Base space  for feature vector  (gene network)K 0Ð1Ñ x œ
Lu, et al.  http://www.nature.com/msb/journal/v3/n1/full/msb4100138.html



Example: Local averaging
7.  Example:  local averaging noise reduction

Using the protein-protein interaction (PPI) gene network
as an example:  consider differentiation of metastatic
and non-metastatic breast cancer (Wang; van de
Vijver).



Example: Local averaging
Wang data set:

 93 metastatic
 183 non-metastatic

van de Vijver data set:
 
 79 metastatic
 216 non-metastatic

How to predict metastasis?



Example: Local averaging
Strategy - regularize the feature vectors before the

classification begins.

Regularizer for feature vectors:  clustering using PPI
network and then averaging over clusters

Classifier:  SVM

Results:

Area under ROC curve improved by 5% to 20%



Example: Local averaging

Performance of local averaging of microarray data locally
averaged in PPI network



Example: Local averaging
8.  Performance using support vector regression:

In Euclidean space: replace noisy gene expression
function by a regularized one based on support vector
regression (here  represents a variable gene inB œ 1
base space gene network)

0ÐBÑ Ä 0ÐBÑ œ OÐBß B Ñ  ,"
3œ"

8
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for selected points (centers) , where  is aÖB × OÐBß CÑ3 3

kernel which gives a metric between genes  and .B C



Example: Local averaging
Example: in our gene space kernel

OÐBß CÑ œ  graph diffusion kernel 

(heat kernel on gene network graph).



Example: Local averaging
Regularized function  is optimizer of objective0ÐBÑ œ 0Ð1Ñ

fn.

0 œ PÐ0Ð1 Ñß D Ñ  m0m ßargmin
0Ð1Ñ 4

4 4 O
#" -

where  gene1 œ 44
>2

 fn  on genes (regularized expressions),0Ð1Ñ œ 0ÐBÑ œ Þ
  original measured expression on gene D œ 44

 PÐ0Ð1 Ñß D Ñ œ Ðl0Ð1 Ñ  D l  Ñ4 4 4 4
%

  loss function (difference between measuredœ
   and regularized gene expression)
 regularization parameter - œ



Example: Local averaging
 norm of  with respect to kernel m0m œ 0 OO

Regularization done within clusters of genes, grouped by
similar expressions in the training set



Example: Local averaging

Support vector regression performance (expression clustering
followed by regression in each cluster)



Example: Local averaging
There are other potential gene metrics based on gene

networks derived gene ontology (GO), gene copy
number information (in cancer), etc.



Example: Local averaging
Now consider a smoothing transformation  on  toX 0Ð1Ñ

smooth out noise:

Mapping  gives0Ð1Ñ Ä XÐ0Ð1ÑÑ

X Ð0Ð1ÑÑ œ XÐ0 Ð1ÑÑ  XÐ Ð1ÑÑ" % .

Transformation  will differ from the trueXÐ0 Ð1ÑÑ"

expression , so we have introduced bias0 Ð1Ñ"

If  regularization parameter (cluster size)5



Example: Local averaging
loss of signal through bias increase:
(*)    0  XÐ0 Ñ" "   (increases with 5Ñ

However, the smoothing  of noise  will quench it:XÐ Ð1ÑÑ% %
averaging over  genes will reduce 5 Ä% %"

5È
Gain in signal through variance decrease
(**)        % % "

5È (decreases with )5

For some value of regularization parameter  the bias5
loss in (*) is balanced by the variance gain in **)Ð Þ



Example: Local averaging
This is the usual bias-variance dilemma - when do we

quench so much noise (**) that the increase (*) in bias
is overcome?

Principle: local averaging eliminates noise.



The Gaussian Copula
9.  Use of the Copula

Above in a feature space , we want to discriminateJ
between feature vectors  which represent metastaticx
vs. non-metastatic cancers.



The Gaussian Copula
Use of SVM involves finding a discriminant function

0Ð Ñ œ †  ,x w x

which maps feature vector intox œ
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positive/negative number depending on whether
cancer is metastatic/nonmetastatic.

Denote such an  to be a 0Ð Ñx discriminant.



The Gaussian Copula
Consider microarray  to be a random vector,x Xœ

randomly selected from metastatic patients.

Let be a random variable representing aX œ

\
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random metastatic microarray,

Let Xw
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The Gaussian Copula
be a random variable representing a random non-

metastatic array.

For each , let  be the \ J ÐBÑ œ TÐ\ Ÿ BÑ3 3 3 empirical
distribution function of , obtained from the \3 non-
metastatic .data set

Let [NOT a derivative] represent the same for theJ ÐBÑ3
w

vector .  Define the vector functionXw



The Gaussian Copula

F XÐ Ñ œ

J Ð\ Ñ
J Ð\ Ñ

ã
J Ð\ Ñ
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8 8

which composes each random variable  with its own\3

disribution function .J3

Then it is known that the feature map  maps  into anF X
array of standard uniform random variables.



The Gaussian Copula
Similarly define  so that  has uniform componentsF F Xw w wÐ Ñ

if  represents a random metastatic microarray.Xw

The maps  are known as F Fß w uniform copulas.



The Gaussian Copula
Letting  be the cumulative distribution function of the9ÐBÑ

standard Gaussian, for any vector , define
Ô ×Ö ÙÖ Ù
Õ Ø
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G 9Ð Ñ œ Ð ÑÑßX F X" (

where  acts componentwise.  Similarly define9

G 9w w " w wÐ Ñ œ Ð Ð ÑÑX F X .



The Gaussian Copula
The feature maps ,  therefore map each componentG Gw

of , respectively into standard GaussianX Xß w

distributions.

The maps ,  are know as G Gw normal copulas.

These maps take arbitrarily distributed features into
features all of which have standard normal
distributions.



The Gaussian Copula
These can be used to find a likelihood  and )PÐ Ñ P Ðx xw

representing the respective probabilities that a given
microarray  comes fromx

(a) the non-metastatic population of microarrays, or
(b) the metastatic population of microarrays

Notes:
1.  Conventional linear discriminant analysis (LDA) or

quadratic discriminant analysis (QDA) for binary
classification often assume features have
approximately multivariate normal distributions.



The Gaussian Copula
2.  Hence such methods are sub-optimal when the data

in fact are not normal and may be heavy-tailed.

3.  This method (after application of the feature maps
G Gß w) guarantees that at least the marginals of the
feature vectors (e.g. ( ) are in fact normal (e.g. if G x xÑ
is from the non-metastatic population).



The Gaussian Copula
The form of the discriminant is

0Ð Ñ œ œx P Ð Ñ
PÐ Ñ

w x
x

     
where

N ÐB œ3
\ B
\ B) empirical density of  at location 

empirical density of  at location 
3

3
w

œ 3Jacobian of  coordiante of map from  to  feature>2 wG G
space.



The Gaussian Copula

z x z xœ Ð Ñà œ Ð ÑßG Gw w w

and

D œ empirical covariance matrix of  X

Dw wœ Þempirical covariance matrix of X

Results:



The Gaussian Copula
Accuracies: Normally distributed data:

E = empirical normalization method
J = empirical normalization using underlying Jacobian
Q = quadratic discriminant (assuming normality)
S = SVM
T = Optimal Bayes method based on knowledge of underlying densities



The Gaussian Copula
Accuracies:  (Heavy-tailed) -distributed data>"

E = empirical normalization method
J = empirical normalization using underlying Jacobian
Q = quadratic discriminant (assuming normality)
S = SVM
T = Optimal Bayes method based on knowledge of underlying densities



The Gaussian Copula
Accuracies: Benchmark Breast and Prostate cancer data

(Prostate is cancer/no cancer only); CRF denotes
Convergent Random Forest algorithm (Bienkowska)


