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Abstract. Abstract: An extension of Girosi’s sup-norm approximation error
bound using the notion of VC dimension in statistical learning theory is derived
for kernel spaces, and in particular, Lp-Sobolev spaces Lp

s(Rd), 1 ≤ p < ∞,
s > 0. Applications include non-asymptotic, uniform error bound approxima-
tions of f ∈ Lp

s(Rd) by finite linear combinations of weighted Gaussians with
different centers and variances for 1 ≤ p < ∞, and by Haar scaling functions
when p = 2.

1. Introduction

Girosi [8] established an interesting connection between statistical learning the-
ory (SLT) and approximation theory, showing that SLT methods can be used to
prove results of a purely approximation theoretic nature. The probabilistic frame-
work used is a powerful one, but it requires existence of L1 norms.

We show that it is possible to extend these probabilistically-based bounds to
analogous ones using more general Lp norms for 1 ≤ p < ∞. In particular, we
obtain such approximation bounds for Lp Sobolev spaces Lp

s for 1 < p < ∞,
where s is the smoothness parameter. We note that approximation by radial basis
functions included in the type discussed here has been analyzed extensively in the
context of neural network theory (see e.g. [16, 17, 18, 21, 23], and especially [24]);
for regularization and neural networks methods (a precursor to regularization in
SLT) see [9, 20, 24].

Girosi’s novel idea is to exploit the VC dimension-based error bounds on the
difference between expected and empirical risks. He presents a straightforward
derivation of a non-asymptotic uniform error bound for an approximation of a
function f in a kernel space (i.e., a function space defined as the range of an
operator kernel).

What is surprising about his general result on Rd is that the error is of the
order O

(√
(h/n) ln (n/h)

)
where n is the number of data points and h is the VC

dimension. In Girosi’s application involving approximation of L1 Sobolev functions
by Gaussians, h = d + 1, and this uniform bound avoids the so-called curse of
dimensionality.

The outline of the paper is as follows. First we recall some notions from SLT, in-
cluding the seminal VC Bound Theorem of Vapnik and Chervonenkis [29]. Theorem
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2 of Section 3 is an extension of Girosi’s estimates for determining non-asymptotic,
uniform VC error bounds for kernel operators. Girosi’s application to approx-
imating functions in Sobolev spaces L1

s(Rd), s > 0, by linear combinations of
translates of Bessel potential kernels is extended in Corollary 4 to approximating
f ∈ Lp

s(Rd), s > 0, for 1 ≤ p < ∞, with respect to a weighted supremum norm.
Other applications for reproducing kernel spaces and Haar wavelets are also given
in Section 4.

2. SLT Background and Definitions

Let X ⊂ Rd and Y ⊂ R1. Assume the set X×Y is sampled n times under an
unknown probability distribution P (x, y), and denote the data set by {(xi, yi) ∈
X×Y }n

i=1. Here P (x, y) = P (x)P (y|x) is defined on X×Y , with P (y|x) the
conditional probability and P (x) the marginal probability. Given samples {(xi, yi)
∈ X×Y }n

i=1, an important problem in SLT is, for a given hypothesis space H, to
find a function f : X → Y in H such that when x ∈ X is given, f predicts a value
for y optimally.

Within the framework of SLT, we follow Vapnik’s probabilistic bound approach,
which involves the VC dimension [29, 30]. We refer the reader to the excellent arti-
cles [7, 19], standard SLT references [4, 25, 29], and the comprehensive bibliographic
databases [13, 14] .

For f ∈ H, we will assume a given loss function V (y, f(x)) = V (f, z), where
z = (x, y), which measures the error between y and the predicted value f(x). Two
examples are V (f, z) = |y − f(x)|p, 1 ≤ p < ∞ and the {0, 1}-valued function
V (f, z) = 1− χ[−1,1](y − f(x)).

For f ∈ H, the expected risk R[f ] is defined as the average of the loss function
V , namely

Expected Risk = R[f ] =
∫

V (f, z)P (z)dz.(1)

Since the probability measure P (z) = P (x, y) is unknown, the estimator function

(2) f∗ = arg
{

min
f∈H

R[f ]
}

cannot be found directly.
Instead the data set {(xi, yi) ∈ X×Y }n

i=1 is used to find a stochastic approxi-
mation of the expected risk, called the empirical risk. For a function f ∈ Hk ⊂ H
and loss function V (f, z), define

Empirical Risk = Remp[f ; n] =
1
n

n∑

i=1

V (f, zi).

A difficulty in minimizing the expected risk using the empirical risk arises from
the possible existence of many empirical risk minimizing functions. Moreover, it
is possible to pick a function f with small empirical risk, but large expected risk.
The SLT approach to resolving this is to find uniform probabilistic bounds on the
difference between the expected and empirical risks.

In applications, H is often too large and so the empirical risk is successively mini-
mized on a nested sequence of increasing subspaces H0 ⊂ H1 ⊂ · · · ⊂ Hk ⊂ · · · ⊂ H,
where the subscript k denotes the “capacity” of the set Hk. Standard examples of
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linear Hk spaces include: splines with k nodes, and degree k trigonometric polyno-
mials in d variables. The results in this paper are stated in terms of Hk.

Vapnik’s empirical risk minimization principle (ERMP) is an approach which
finds an approximation in Hk to the estimator function f∗ defined in (2) by first
finding a sequence of minimizing approximates fk,n ∈ Hk (with n the number of
data points) defined by

(3) fk,n = arg
{

min
fεHk

Remp[f ; n]
}

.

As n →∞, ideally fk,n ∈ Hk converges to

(4) fk = arg
{

min
fεHk

R[f ]
}

.

For a hypothesis space Hk the precise requirement is

(5) lim
n→∞

Remp[fk,n;n] = lim
n→∞

R[fk,n] = R[fk].

Seminal work of Vapnik and Chervonenkis [29] shows that (5) is satisfied in Hk when
the following one-sided uniform convergence in probability holds for all ε > 0 :

(6) lim
n→∞

P

{
sup

f∈Hk

(R[f ]−Remp[f ; n]) > ε

}
= 0.

We begin a detailed discussion of non-asymptotic VC bounds by defining the VC
dimension.

Definition 1. The VC dimension of a set of functions {V (f, z) : f ∈ H} is the
maximum number h of vectors {zi}h

i=1 that can be separated by functions in this set
into two classes {0, 1} in all 2h possible ways using the rules:{

Class 1 : if V (f, zi)− α ≥ 0
Class 2 : if V (f, zi)− α < 0

where α ∈ R, f ∈ H. If such a separation is possible the set {zi}h
i=1 is said to be

shattered by H.

In the above definition we sometimes use the convention that f is the parameter
and z is the variable, since f (along with α) is fixed for each separation in the
variable z.

Two sets of real functions with VC dimension d + 1 are:
• characteristic functions of half-planes on Rd (in the variable z)
• characteristic functions of circles on Rd.

The following well-known theorem of Vapnik and Chervonenkis, which gives
probabilistic estimates of integrals by finite sums, is used in the main results of [8]
and this paper.

Theorem 1. (VC Bound Theorem - [29]). Let V (y, f(x)) = V (f, z), z = (x, y),
satisfy A ≤ V (f, z) ≤ B for f in Hk. Let h be the VC dimension of {V (f, z)}f∈Hk

and n be the number of data points zi (chosen with respect to the probability distri-
bution P (z) = P (x, y)). Then the following inequality holds simultaneously for all
f ∈ Hk, with probability at least 1− η:

|R[f ]−Remp[f ; n]| ≤ (B −A)

√
h ln 2en

h − ln η
4

n
.
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3. Extending Girosi’s Results to Lp
s(Rd), p > 1

The so-called curse of dimensionality occurs when a problem’s complexity grows
exponentially with dimension d. Typically, for a function of smoothness s in di-
mension d, the number of parameters n needed to achieve an approximation error
smaller than some positive ε is

n ∝
(

1
ε

)d/s

.

Letting the smoothness s change with dimension d enables the approximation error
to be better than O(n−s/d), and some researchers have used this technique to deal
with such strong dimensional dependence [2, 3, 15, 17, 21, 22].

This problem is also dealt with in [8], where there is a reinterpretation of SLT
notions as follows:

SLT Notation Approximation Theory Notation
R [risk function] f
f x
z t
V [loss function] K [kernel]
P [probability distribution] λ [measure]
Hk [approximation space] Rd

Under these replacements the expected risk

R[f ] =
∫

V (y, f(x))P (x, y)dxdy =
∫

V (f, z)P (z)dz

becomes

(7) f(x) =
∫

K(x, t)λ(t)dt,

and the empirical risk

Remp[f ] =
1
n

n∑

i=1

K(x, ti).

Girosi [8] used the VC Bound Theorem of Vapnik and Chervonenkis, to find
estimates of approximation of some integrals of the form (7) when λ(t) ∈ L1(Rd).
We now describe a modification of Girosi’s result applied to functions of the form
(7).

Note that we assume (as in [29] and [8]) that the kernel K is bounded above and
below, i.e. A ≤ K(x, t) ≤ B. The following probabilistic error bound holds with
probability 1− η for λ ∈ L1(Rd) (here λ can be both positive and negative) and a
sample of n points {ti}n

i=1 taken with respect to the probability density |λ(x)|dx
(normalized to unit L1 norm if necessary):

(8)

∥∥∥∥∥f(x)− 1
n

n∑

i=1

sgn(λ(ti))K(x, ti)‖λ‖L1

∥∥∥∥∥
L∞

≤ 4τ‖λ‖L1

√
h ln 2en

h − ln η
4

n
.

where τ = B −A.
Note that for every positive η < 1, this implies there exists a sample {ti}n

i=1

such that (8) holds. Letting η ↑ 1, we see that the right hand side of (8) approaches
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4τ‖λ‖L1

√
h ln 2en

h +ln 4

n from above. That is for any ε > 0 we can find an η < 1 such

that 4τ‖λ‖L1

√
h ln 2en

h −ln η
4

n ≤ 4τ‖λ‖L1

√
h ln 2en

h +ln 4

n + ε. Thus for any ε > 0 there
exists a sample T = {ti}n

i=1 such that

(9)
∥∥∥∥f(x)− 1

n

n∑

i=1

sgn(λ(ti))K(x, ti)‖λ‖L1

∥∥∥∥
∞
≤ 4τ‖λ‖L1

√
h ln 2en

h + ln 4
n

+ ε.

Note that we require the additional ε > 0 (not given in [8]) on the right side in
order for the statement to be true for the most general bounded kernels K(x, t).
For kernels which are uniformly continuous in x as in Corollary 3 below, we show
that (9) holds for ε = 0.

Remarks: It should be emphasized that the probabilistic approach based on
the VC Bound Theorem does not give any constructive method for finding a set of
vectors {ti}n

i=1.
The term 4τ in the bound arises as follows. First, note that if |K(x, t)| ≤ τ ,

then A = −τ ≤ K(x, t) ≤ τ = B, so that the factor B − A becomes 2τ . The
additional factor of 2 in the term 4τ is a consequence of writing the coefficients
ci = c+

i − c−i , the sum of their negative and positive parts (i.e., c+ = sup(c, 0) and
c− = sup(−c, 0)).

In the following we extend Girosi’s estimates to the case λ ∈ Lp(Rd), 1 ≤ p < ∞.
We recall that a weighted L∞ norm is defined by

‖f‖L∞,a(x) =ess supx|f(x)a(x)|.
Definition 2. Let K(x, t) be an operator kernel. For fixed 1 ≤ p < ∞, we define
its range FK =

{
f(x) =

∫
K(x, t)λ(t)dt

∣∣ λ(t) ∈ Lp(Rd)
}

.

We define the VC dimension of K (in the variable t and parameter x) as in
Definition 1. That is the maximum number h of vectors {ti}h

i=1 which can be
separated into two classes in all possible ways, using classes of the form K(x, ti)−
α ≥ 0 and K(x, ti)− α ≤ 0, as the parameters x and α vary.

Note that in Theorem 2 below, it is not required that the kernel K(x, t) be
bounded as long as (10) holds.

Theorem 2. Let 1 ≤ p < ∞. Assume f ∈ FK and that there exist positive
functions g and k with g(t) ∈ Lq, 1

p + 1
q = 1 such that

(10) ess supx,t

∣∣∣∣
K(x, t)
g(t)k(x)

∣∣∣∣ ≤ τ.

Let h be the VC dimension of
K(x, t)
g(t)k(x)

in the parameter x and the variable t. Then

writing

f(x) =
∫

K(x, t)λ(t)dt, λ(t) ∈ Lp(Rd),

for every ε > 0 there exist {t1, . . . , tn} ⊂ Rd, and n coefficients ci = sgn(λ(ti)) =
±1, such that the weighted L∞ norm

∥∥∥∥∥f(x)− 1
n

n∑

i=1

ci‖λg‖L1
K(x, ti)

g(ti)

∥∥∥∥∥
L∞,1/k(x)
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(11) ≤ 4τ‖g‖Lq‖λ‖Lp

√
h ln 2en

h + ln 4
n

+ ε.

Proof: For positive g ∈ Lq(Rd), 1
p+ 1

q = 1 , λ(t)g(t) ∈ L1 by Hölder’s inequality.
Thus

f(x)
k(x)

=
∫

K(x, t)
g(t)k(x)

λ(t)g(t)dt

replacing λ(t) by λ(t)g(t) (since λ(t)g(t) ∈ L1). Replacing K(x, t) by K(x, t)/g(t),
we conclude that by (9) for every ε > 0 there exist ti such that

∥∥∥∥∥
f(x)
k(x)

− 1
n

n∑

i=1

K(x, ti)
g(ti)k(x)

‖λ(t)g(t)‖L1sgn(λ( ti)g(ti))

∥∥∥∥∥
L∞

≤ ‖λ‖Lp‖g‖Lq

∥∥∥∥
∫

K(x, t)
g(t)k(x)

λ(t)g(t)
‖λ(t)g(t)‖L1

dt

− 1
n

n∑

i=1

K(x, ti)
g(ti)k(x)

sgn(λ(ti)g(ti))

∥∥∥∥∥
L∞

≤ 4τ‖λ‖Lp‖g‖Lq

√
h ln 2en

h + ln 4
n

+ ε

where h is the VC dimension of the kernel K(x, t)/(g(t)k(x)). Note that the first
inequality above uses Hölder’s inequality. ¥

We remark that this proposition applies to kernel spaces such as wavelet and
Sobolev spaces (see below).

We now give an immediate application of these results to approximation of func-
tions in Sobolev spaces, extending Girosi’s L1 results. The generalized Sobolev
space Lp

s(Rd) for s > 0 and p ≥ 1, using the notation of Stein [28], is now defined.

Definition 3. For 1 ≤ p ≤ ∞, s ∈ R+ and defining

f̂(ξ) =
∫

Rd

f(x) exp(2πix · ξ)dx,

we define the generalized Sobolev space as:

Lp
s(Rd) ≡

{
f ∈ Lp(Rd) : (I −∆)s/2f ∈ Lp(Rd)

}
,

with norm ‖f‖Lp
s

= ‖(I −∆)s/2f‖Lp(Rd), where I is the identity operator, ∆ is the
Laplacian defined via

∆̂f(x) = −4π2|ξ|2f̂(ξ),
and ξ = (ξ1, ...., ξd) denotes the Fourier variable dual to x = (x1, ......, xd).

Thus when f ∈ Lp
s(Rd), there exists a λ ∈ Lp such that

f = (I −∆)−s/2λ and ‖f‖Lp
s

= ‖λ‖Lp .

Note that the above can be rewritten

f = (I −∆)−s/2λ

= (Ĝsλ̂)∨(12)
= Gs ∗ λ
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where

(13) Ĝs(ξ) =
1

(1 + 4π2|ξ|2)s/2
,

u∨ denotes the inverse Fourier transform of u, and * denotes convolution. We will
use the integral representation of Gs ([28] p. 132) given by

(14) Gs(x) =
(4π)−s/2

Γ( s
2 )

∫ ∞

0

exp
(
−π

σ
|x|2

)
exp

(
− σ

4π

)
σ(s−d−2)/2dσ.

to prove Corollary 3 and derive an application of Theorem 2 in Section 4.
The next application of Theorem 2 is an extension of Proposition 3.1 in [8] to Lp

s

spaces with 1 ≤ p < ∞. Note that the condition s > d guarantees that the kernel
Gs(x− t) is continuous at the origin, and in fact is uniformly continuous in x as t
varies — see the proof of the Corollary below.

Corollary 3. Let 1 ≤ p < ∞. Let f ∈ Lp
s(Rd) with s > d. Let Gs be the kernel of

(I −∆)−s/2 (see (14)) and λ = (I −∆)s/2f . Assume there exist positive functions
g and k with g(t) ∈ Lq, 1

p + 1
q = 1 such that

ess supx,t

∣∣∣∣
Gs(x− t)
g(t)k(x)

∣∣∣∣ ≤ τ.

Let hs be the VC dimension of

K(x, t) =
Gs(x− t)
g(t)k(x)

in the parameter x and variable t. Then for some m ≤ n there exist {t1, . . . , tm} ⊂
Rd, and m coefficients ci = sgn(λ(ti)) = ±1, such that the weighted L∞ norm

∥∥∥∥∥f(x)− 1
m

m∑

i=1

ci‖λg‖L1
Gs(x− ti)

g(ti)

∥∥∥∥∥
L∞,1/k(x)

(15) ≤ 4τ‖g‖Lq‖f‖Lp
s

√
hs ln 2en

hs
+ ln 4

n
.

Proof: Since f ∈ Lp
s(Rd), there exists λ(t) ∈ Lp such that

f(x) = [Gs ∗ λ](x) =
∫

Gs(x− t)λ(t)dt

and, in addition, ‖f‖Lp
s

= ‖λ‖Lp , ([28], p.134). For g ∈ Lq(Rd), 1
p + 1

q = 1, we have
‖λ(t)g(t)‖L1 ≤ ‖λ(t)‖Lp‖g(t)‖Lq .

Thus by Theorem 2, for each j > 0, there exists a sample Tj = {tij}n
i=1, and

cij = ±1 such that
∥∥∥∥∥f(x)− 1

n

n∑

i=1

cij‖λg‖L1
Gs(x− tij)

g(tij)

∥∥∥∥∥
L∞,1/k(x)

(16) ≤ 4τ‖g‖Lq‖f‖Lp
s

√
hs ln 2en

hs
+ ln 4

n
+

1
j

.
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If the sequence of samples {Tj}∞j=1 is bounded, it has a subsequence with a
limit T = {ti}n

i=1. Further (by taking a sub-sequence if necessary) we may assume
that for each i, a limit ci of the j-sequence cij = sgn(λ(tij)) exists. In this case
inequality (15) holds for this choice T = {ti} and these ci. This follows from
the uniform continuity of Gs(x − ti) (see below), which shows that as j → ∞,
Gs(x− tij) → Gs(x− ti) in the L∞[x] norm.

On the other hand, if {Tj}j is unbounded, then a subsequence converges to ∞,
which implies that tij → ∞ as j → ∞ for some fixed i. In this case the ith term
in the sum in (16) can be eliminated without loss (since for sufficiently large tij

the term cij‖λ · g‖L1
Gs(x−tij)

g(tij)
in (16) can only increase the error on the left side).

Successively eliminating all terms in the sum of (16) with i for which tij → ∞ as
j →∞ in this way, we have left a set of terms {ti}m

i=1 in the sum in (16) which we
may, without loss of generality, assume are numbered from 1 to m ≤ n and for which
(15) holds as desired. Note that this process of elimination must stop before the
last term is eliminated (for sufficiently large n), since the zero approximation (i.e.,
that with no terms in it) cannot approximate a function with arbitrary accuracy.

Finally, to prove the uniform continuity of Gs(x − ti) note that since s > d,
Gs(x − ti) is continuous in x [28] (and so uniformly continuous on any compact
set), and that it decays at infinity, since Gs(x − ti) = O(exp(−c|x|)) as |x| → ∞,
([28], page 132). ¥

Remark. In general the weight 1/k(x) may be needed to counterbalance the
effect of dividing the kernel by an Lq function g(t) in order that the full kernel
K(x, t)/(g(t)k(x)) remains bounded. This weight is needed for that reason in our
next example involving Gaussian kernels.

4. Applications

To approximate f ∈ Lp
s(Rd), 1 ≤ p < ∞, by a sum of weighted Gaussians with

different centers and variances, we follow Girosi [8] and write the Bessel kernel Gs

in its integral representation (14). Recall from Section 3 that for f ∈ Lp
s(Rd), there

exists a λ ∈ Lp such that f = Gs ∗ λ, so

f(x) =
∫ ∞

0

∫

Rd

exp
(
−π

σ
|x− t|2

)
Λ(t, σ)dtdσ.

where

(17) Λ(t, σ) =
(4π)−s/2

Γ( s
2 )

exp
(
− σ

4π

)
σ(s−d−2)/2λ(t).

Letting R+ denote the non-negative real numbers, f has the form

f(x) =
∫

Rd×R+
K(x; t′)Λ(t′)dt′

where K(x; t′) = K(x; t, σ) = exp
(−π

σ |x− t|2) is now the Gaussian. To apply
Theorem 2, we have replaced t = (t1, t2, ..., tn) by t′ = (t1, t2, ..., tn, σ). Let

(18) B(σ) =
(4π)−s/2

Γ( s
2 )

exp
(
− σ

4π

)
σ(s−d−2)/2.

From above if Λ(t′) ∈ Lp(Rd × R+), it follows from the product form of Λ(t, σ) =
B(σ)λ(t) that Λ(t, σ) ∈ Lp(Rd×R+) if and only if ( s−d

2 −1)p > −1 or s > d+2− 2
p .
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The space Lp
s(Rd) is contained in the continuous functions C(Rd) for s− d

p > 0.
When p > 1, we have d + 2− 2

p > d
p , since dp + 2p− 2 > d follows from dp > d and

2p− 2 > 0. Therefore if we assume that s > d + 2− 2
p , it follows s− d

p > 0, so that
Lp

s(Rd) ⊂ C(Rd) and of course Λ(t, σ) ∈ Lp(Rd × R+).
Girosi uses a theorem of Dudley [5], to show that the the VC dimension of the

family K(x, t) = exp
(−π

σ |x− t|2) is d + 1 (d = dimension), so that the supremum
norm approximation of an arbitrary function in L1

s(Rd) by a linear superposition
of scaled Gaussians with different centers and variances has a bound of order

√
(d + 1) ln n

d+1

n
,

where n is the number of data points. Our next example shows that for s > d+2− 2
p ,

a weighted bound for approximating any Lp
s(Rd) function f by such superpositions

has the same form as Girosi’s, with the replacement of d + 1 by d + 2 for the V C
dimension.

Within the proof of Corollary 4 below, we prove [Proposition 5] that the VC
dimension of our family of kernels is less than that of the collection of sets bounded
by all hyperplanes in Rd+1, which is d + 2.

Definition 4. We define

K(x; t, σ) =
exp

(
−π|x−t|2

σ

)

g(t)k(x)
,

where

g(t) = exp
(−J(σ)π

3

)
|t|2,

with

J(σ) =
{

1 if σ ≤ 1
1
σ if σ > 1

k(x) = exp(π|x|2).
We define

τ = ess supx,t,σ |K(x; t, σ)| .
Corollary 4. Let f ∈ Lp

s(Rd) with s > d + 2 − 2
p , and let Λ(t, σ) be as in

(17). Then for every ε > 0 there exists means {t1, t2, . . . , tn} ⊂ Rd, variances
{σ1, σ2, ...., σn} ⊂ R+ and coefficients ci = sgn(Λ(ti, σ)) = ±1 such that∥∥∥∥∥f(x)− 1

n

n∑

i=1

ci
‖Λg‖L1

g(ti)
exp

(−π|x− ti|2
σi

)∥∥∥∥∥
L∞, exp(−π|x|2)

≤ 4‖f‖Lp
s
‖g‖Lq‖B(σ)‖Lp

√
(d + 2) ln 2en

d+2 + ln 4
n

+ ε

where B(σ) is as in (18).

Proof : We note that the norm ‖Λg‖L1 is taken in the variables (t, σ) ∈ Rn×R+.
By Theorem 2, we need to show:

(1) the kernel K(x; t, σ) is bounded (in this case by the bound τ = 1)
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(2) d + 2 is an upper bound of the VC dimension of the class of functions
K(x; t, σ) in the parameter x and variables t, σ.

Step 1. To show that K(x; t, σ) is bounded by 1 for x, t ∈ Rd, σ ∈ R+, d ≥ 1,
it suffices to show

−1
σ
|x− t|2 +

J(σ)|t|2
3

− |x|2 < 0, x, t ∈ Rd, and σ ∈ R+

Note that for d ≥ 1,

−1
σ
|x− t|2 +

J(σ)|t|2
3

− |x|2 ≤
(−1

σ
− 1

)
|x|2 +

(−1
σ

+
J(σ)

3

)
|t|2 +

2|x||t|
σ

.

For a fixed σ, the polynomial on the right is a quadratic form in |x| and |t|. The
matrix of the form is

S =
[ − 1

σ − 1 1
σ

1
σ − 1

σ + J(σ)
3

]
.

The trace of S is −2
σ −1+J(σ)

3 , which is negative for both cases of J . The determinant
of S is 1

σ − J(σ)
3σ − J(σ)

3 , which is positive for both cases. As the determinant equals
the product of the eigenvalues, we conclude that the eigenvalues of S are negative,
and S is negative definite. Thus K is bounded uniformly by 1.

Step 2: We use the following proposition to show that the VC dimension of the class
of functions determined by our weighted Gaussian kernel K(x; t, σ) is less than the
VC dimension of the subsets bounded by hyperplanes in Rd+1.

Proposition 5. (Bound on VC dimension of Weighted Gaussian Kernel) The VC
dimension of the family

(19) K(x; t, σ) = exp
( −π|x− t|2

σ
+

πJ(σ)|t|2
3

−π|x|2
)

in the parameter x and variables (t, σ) is bounded by d + 2, with d the dimension.

Proof: Since the exponential function is one-to-one, it suffices to show that this
VC dimension bound holds for the family of functions.

{−π|t− x|2
σ

+
πJ(σ)|t|2

3
− π|x|2 : x ∈ Rd

}
.

We write
−π|t− x|2

σ
+

πJ(σ)|t|2
3

− π|x|2

=
(

πJ(σ)
3

− π

σ

)
|t|2 +

2π

σ
t · x−

(π

σ
+ π

)
|x|2.

This family of functions of (t, σ) (parameterized by x) is at most d+2 dimensional,
as each function is a linear combination of the d + 2 fixed functions{

t1

σ
, ...,

td

σ
,

(
πJ(σ)

3
− π

σ

)
|t|2, −

(π

σ
+ π

)}

(with coefficients dependent on the parameter x). By [27], this family therefore has
VC dimension bounded by d + 2 and the proposition is proved. ¥
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The result of the corollary now follows from ‖Λ(t, σ)‖Lp = ‖λ(t)B(σ)‖Lp =
‖λ(t)‖Lp ‖B(σ)‖Lp , ‖f‖Lp

s
= ‖λ(t)‖Lp , and noting that by Theorem 2, for every

ε > 0 there exists a sample set {tij}n
i=1 such that

∥∥∥∥∥∥
f(x)− 1

n

n∑

i=1

cij‖Λg‖L1

exp
(
−π
σi
|x− tij |2

)

g(tij)

∥∥∥∥∥∥
L∞, exp(−π|x|2)

=

∥∥∥∥∥exp(−π|x|2)
{∫

Rd+1

exp
(−π

σ |x− t|2)

g(t)
g(t)Λ(t, σ)dtdσ

− 1
n

n∑

i=1

sgn(Λ(tij , σ))‖Λg‖L1

exp
(
−π
σi
|x− tij |2

)

g(tij)





∥∥∥∥∥∥
L∞

≤ 4τ‖Λ(t, σ)‖Lp‖g‖Lq

√
(d + 2) ln 2en

d+2 + ln 4
n

+ ε

where, as above, Lp norms of functions of σ and t are joint in the two variables.
We note that in this case τ = sup K = 1. This completes the proof of Corollary 4.
¥

We now mention some applications for reproducing kernel Hilbert spaces. Let
H be a Hilbert space with inner product (·, ·), whose elements are real or complex-
valued functions defined on a set S, such that for every x ∈ S, the point-evaluation
functional f → f(x) on H is bounded. By the Riesz representation theorem, for
x ∈ S, there is an element Kx ∈ H such that for every f ∈ H,

f(x) = (f,Kx).

The function K on S×S, defined by

K(x, t) = (Kx,Kt) = Kx( t),

is called the reproducing kernel of H.
It is clear that the conclusion of Theorem 2 holds in the special case λ = f ,

which we will consider in the examples below.
The results in this paper also remain valid when the space Rd is replaced with

Cd, C the complex plane. Here in (9) (in the case that both the kernel and function
are complex) the constant 4τ must be replaced by 2

√
2 times 4τ and the term ln 4

is replaced by ln 16. This follows because Theorem 1 above is used for the real and
imaginary parts (each of which consists of two integrals, since f has two compo-
nents) separately, and the constant η is allowed to approach 1

4 instead of 1, since we
wish in this case to have a non- vanishing probability that the real and imaginary
approximations (i.e. four integrals all together) simultaneously approximate the
function f(z).

By the above observations, Corollary 4 (with these possible modifications) is
valid for function spaces associated with the following reproducing kernels.

• Projection kernels of multiresolution spaces for frames and wavelets.
• The sinc kernel

K(z, w) =
sinπ(z − w)

π(z − w)
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for the Paley-Weiner space, i.e., the set of all entire functions of exponential
type at most π that are square integrable on the real axis. The integral
representation in this case is

f(z) =
∫ ∞

−∞
f(t)

sin π(t− z)
π(t− z)

dt, z ∈ C.

• The Szegö kernel

K(z, w) =
1

1− zw

for the Hardy space, i.e., all functions f in the open unit disk in the complex
plane, whose Taylor coefficients are square-summable.

• The Bergman kernel

K(z, w) =
1

π(1− zw)2

for the space of all functions f that are analytic in the open unit disk and
have finite L2 norm on the open unit disk. The integral representation in
this case is (here z = x + iy)

f(w) =
1
π

∫ ∫

|z|<1

f(z)
1

(1− zw)2
dxdy, z, w ∈ C.

Note that the problem of unboundedness of the above kernels can in some cases
be eliminated with proper choice of weights k(x) and g(t).

Our final application is for Haar scaling functions and wavelets. We recall that
a multiresolution analysis is a decomposition of L2(Rd) into an increasing nested
sequence of closed subspaces Vn, such that a function f(x) ∈ Vn if and only if
f(2x) ∈ Vn+1;

⋂
Vj = 0;

⋃
Vj = L2(Rd), where overline denotes closure; and V0

is closed under multi-integer translations.
Let

(20) φd(x) =
{

1 x ∈ [0, 1]d

0 otherwise

denote the Haar scaling function in Rd. Then at the scale n = 0, the family of
wavelets consists of products of the form ψλ

d (x) =
∏d

i=1 ηi(xi), where ηi(xi) is either

(21) φ(xi) =
{

1 xi ∈ [0, 1]
0 otherwise or ψ(xi) =





1 xi ∈ [0, 1/2]
−1 xi ∈ (1/2, 1]
0 otherwise

Thus the total number of basic wavelets is 2d − 1 [31]. We define the homogeneous
Sobolev space for s ∈ R by

L2
hom,s =

{
f ∈ L2(Rd)

∣∣∣‖f‖L2
hom,s

=
∥∥∥|ω|sf̂(ω)

∥∥∥
L2

< ∞
}

.

Note that the bound below consists of two parts - the first is a standard error
bound [11] for the difference between a function and its best approximation fn

(which itself is generally an infinite sum) in the scaling space Vn. The second term
allows the infinite sum defining fn to be replaced by a finite one with m terms,

with an additional cost of 4τ‖g‖ ‖f‖
√

2 ln em+ln 4
m .
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Theorem 6. Let the function f(x) ∈ L2
s(Rd), d

2 < s < d
2 + 1. Then there exists

an approximation of the form
∑m

i=1 ciφd(2nx− ki), ki ∈ Zd so that for any fixed
r > d/4, ∥∥∥∥∥f(x)−

m∑

i=1

ciφd(2nx− ki)

∥∥∥∥∥
L∞,(1+|x|2)−r

≤ 2d 2−(n+1)(s−d/2)

1− 2(d/2−s)
‖f‖L2

s
supλ‖ψλ

d‖L2
hom,−s

+ 4τ‖g‖L2‖f‖L2

√
2 ln em + ln 4

m
.

Here,

ci =
±2nd

m

∥∥∥∥
fn

(1 + |t|2)r

∥∥∥∥
L2

(1 + |ti|2)r

for some choice of ti ∈ Rd, g(t) = (1+ |t|2)−r, τ = 2nd(1+2−2nd)r, and fn denotes
the projection of f onto Vn.

We remark that in the proof below we show that

‖g‖2L2 =
π

d
2

Γ(d
2 )

β

(
d

2
, 2r − d

2

)

where β is the beta function.
The allowed range on s is due to the fact that ψλ

d ∈ L2
hom,−s only for d

2 < s <
d
2 + 1 (see below - this essentially results from the limited number of vanishing
moments of Haar wavelets); with other wavelets the range is larger. In addition,
for f ∈ L2

s∗ , s∗ ≥ d
2 + 1, the bound on the right side above obviously continues to

hold for any choice of s satisfying d
2 < s < d

2 + 1, since L2
s∗ ⊂ L2

s.
Proof: Let Vn denote the scaling space spanned by {φd(2dx− k)}k∈Zd . First note
that by [11], proof of Theorem 2.2.4 for f ∈ L2

s, s > d
2 , there exists fn ∈ Vn such

that

(22) ‖f − fn‖∞ ≤ 2d 2−(n+1)(s− d
2 )

1− 2(d/2−s)
‖f‖L2

s
supλ‖ψλ

d‖L2
hom,−s

.

Since ψλ
d is a Haar wavelet and so its translates all have disjoint supports. The

constant Aλ appearing in the above-mentioned proof in [11] has value

Aλ ≡ sup
x

∑

k∈Zd

|ψλ
d (x− k)| = 1

so that
∑

λ Aλ = 2d − 1 < 2d, since the cardinality of λ in the sum (the number of
different wavelets) is 2d − 1. This justifies the constant 2d on the right of (22).

The Fourier transform of a one dimensional Haar wavelet is (for ω ∈ R)

ψ̂(ω) = − 2i

πω
eiπω sin2

(πω

2

)
= O(|ω|)(|ω| → 0),

while the transform of the one dimensional scaling function is

φ̂(ω) =
1

πω
eiπω sin(πω) = O(1)(|ω| → 0).
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Therefore, since the Fourier transform ψ̂λ
d (ω) of a d−dimensional wavelet is a prod-

uct of at least a single one dimensional copy of ψ̂(ω) and at most d− 1 one dimen-
sional copies of φ̂(ω), it follows that for all λ (note now ω ∈ Rd)

ψ̂λ
d (ω) = O(|ω|) (|ω| → 0).

Thus ψλ
d ∈ L2

hom,−s for s < d
2 + 1, leading to the bound on s in the statement of

the theorem.
Note that (22) clearly still holds when the ‖ · ‖∞ on the left is replaced by the

weighted ‖ · ‖L∞,(1+|x|2)−r/2 norm. Thus it suffices to show that for fn ∈ Vn, there
exist {ci}m

i=1 ⊂ R of the form above, {ti}m
i=1 ⊂ Rd, and multi-integers {ki}m

i=1 ⊂ Zd,
such that

(23)

∥∥∥∥∥fn −
m∑

i=1

ciφd(2nx− ki)

∥∥∥∥∥
L∞,(1+|x|2)−r/2

≤ 2τ‖fn‖L2‖(1 + |t|2)−r‖L2

√
2 ln em + ln 4

m
.

This estimate gives an L∞ approximation bound using a finite number of scaling
function translates (note also that ‖fn‖L2 ≤ ‖f‖L2).

Define the kernel

G(x, t) = 2nd
∑

k∈Zd

φd(2nx− k)φd(2nt− k),

which is a reproducing kernel for Vn since {2nd/2φ(2nx−k)}k∈Zd is an orthonormal
basis for Vn. Thus for fn ∈ Vn

fn(x) =
∫

Rd

G(x, t)fn(x)dt.

Note that for fixed x,

(24) G(x, t) = 2ndφd(2nt− k),

where k ∈ Zd is uniquely determined by φd(2nx− k) 6= 0.
The VC dimension of the family

F = {G(x, t)}x∈Rd = {2ndφd(2nt− k)}k∈Zd

(in the parameter k and the variable t) is h = 2. Indeed, if {ti}3i=1 are three points
in Rd, then for them to be shattered by F requires that they be in different dyadic
cubes of order 2−n. In this case, however, there is no element Φ of the family

{ 2ndφd(2
nt− k)− α} k∈Zd,α∈R

such that for two of the points say t1, t2,

Φ(t1), Φ(t2) > 0,

while for the third point Φ(t3) ≤ 0. This shows the VC dimension of F is 2.
Therefore by Theorem 2 with k(x) = (1+ |x|2)r and g(t) = (1+ |t|2)−r, for each

j > 1 there exist {dij}m
i=1 (with dij = ±1), {tij}m

i=1 with tij ∈ Zd such that∥∥∥∥∥fn(x)− 1
m

m∑

i=1

dij

∥∥fn(1 + |t|2)−r
∥∥

L2

G(x, tij)
(1 + |tij |2)−r

∥∥∥∥∥
L∞,(1+|x|2)−r
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(25) ≤ 4τ ′‖fn‖L2‖(1 + |t|2)−r‖L2

√
2 ln em + ln 4

m
+

1
j

where

τ ′ = sup
x,t

[
G(x, t)

(1 + |t|2)r

(1 + |x|2)r

]
,

and fn the projection of f onto Vn.
We can replace 1/j on the right side above using an argument similar to that

at the end of the proof of Corollary 3. Namely, if the sequence {Tj} = {tij}m
i=1 is

bounded, we take a convergent subsequence (converging to some ti), and by taking
a sub-subsequence, we may assume that {dij} all have limits (of ±1) as j → ∞.
In this case, it is easy to show that by taking a further subsequence, the functions
G(x, tij) converge in L∞[x] (in fact from their definition they can be chosen to be
unchanging as functions of x for sufficiently large j).

On the other hand if {Tj} is unbounded, we can as before eliminate the terms i
in the sum for which {tij}∞i=1 converges to ∞. Thus as at the end of the proof of
Corollary 3, there exists a k ≤ m, {di}k

i=1 (with di = ±1) and {ti}k
i=1 such that

∥∥∥∥∥fn(x)− 1
k

k∑

i=1

di

∥∥fn(1 + |t|2)−r
∥∥

L2

G(x, ti)
(1 + |ti|2)−r

∥∥∥∥∥
L∞,(1+|x|2)−r

(26) ≤ 4τ ′‖fn‖L2‖(1 + |t|2)−r‖L2

√
2 ln em + ln 4

m

where τ ′ is defined above. Note that k = m if no terms have been eliminated, and
otherwise k < m.

Define

ci =
±2nd

k

∥∥∥∥
fn

(1 + |t|2)r

∥∥∥∥
L2

(1 + |ti|2)r

with + or − in front according to the sign of fn(ti). To verify (23) above, we will
now show τ ′ ≤ τ = 2nd(1 + 2−2nd)r.

In any dyadic cube C of side 2−n, we have that in C×C, G(x, t) = 2nd, while

(1 + |t|2)
(1 + |x|2) ≤ 1 + d2−2n.

The latter follows from the fact that in C×C, the ratio above is maximized if
this cube has one corner at the origin. In that case the numerator is largest when
|t| is largest, i.e., equal to the length of the diagonal of this cube, which gives
1 + |t|2 = 1 + d2−2n, and when x = 0.

Thus since G(x, t) ≤ 2nd

τ ′ ≤ τ ≡ 2nd(1 + d2−2n)r.

Choosing ki so that for all x, G(x, t
i
) = 2ndφ(2nx − ki), we see that (26) above

implies (23), completing the proof.
We note that the above norm

‖(1 + |t|2)−r‖2L2 =
∫

Rd

(1 + |t|2)−2rdt = 2
πd/2

Γ
(

d
2

)
∫ ∞

0

(1 + ρ2)−2rρd−1dρ

=
πd/2

Γ
(

d
2

)
∫ ∞

0

(1 + u)−2rud/2−1du =
πd/2

Γ
(

d
2

)β

(
d

2
, 2r − d

2

)
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where β(µ, ν) =
∫ 1

0
xν−1(1−x)µ−1dx denotes the Beta function [10], section 3.194.

¥

5. Conclusion

There are technical difficulties in establishing analogues of Theorem 2 for prob-
abilistic error bounds using Vγ dimension (a generalization of VC dimension) and
covering numbers. Of the three function space capacity measures consisting of VC
dimension, Vγ dimension and covering numbers, the VC dimension is most difficult
to calculate. Moreover there is an example of an infinite dimensional reproducing
kernel Hilbert space (RKHS) with infinite VC dimension, but finite bounds for its
Vγ dimension [6].

When the loss function is the least squares error there are sharp bounds for
Vγ dimension [1, 6] and for covering numbers [4, 25, 26, 32, 33]. We remark that
bounds for covering numbers [4] are useful in the stability property approach to
SLT [7, 12, 25].

We also note that the approach that Girosi has developed is derived from prob-
abilistic methods developed by Dudley [5] and others, which are effectively formal-
izations of Monte Carlo methods for estimating integrals such as those for expected
risk. These probabilistic theorems involve estimates which are uniform in a param-
eter (the function f) in the integral. When this parameter is translated into x,
we obtain uniformity in x for estimates of functions in reproducing kernel Hilbert
spaces. This gives the advantage of Monte Carlo, with its low dimensional depen-
dence, together with estimation of full functions and not just single parameters.
This is an important benefit of the translation of the above-mentioned probabilistic
results into approximation theoretic ones.
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analysis of our paper. The second author thanks F. Girosi and D. Watson for
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