Basics of Wavelets

References: |. Daubechies (Ten Lectures on Wavelets; Orthonormal Bases of
Compactly Supported Wavelets)

Also: Y. Meyer, S. Mallat

Outline:

1. Need for time-frequency localization
2. Orthonormal wavelet bases: examples

3. Meyer wavelet
4. Orthonormal wavelets and multiresolution analysis

1. Introduction

Signal:

’—\ ¥ =)

figl

Interested in “frequency content” of signal, locally in time. E.G., what is the
frequency content in the interval [.5, .6]?



Standard techniques: write in Fourier series as sum of sines and cosines:

given function definedon [— L, L] as above:
flz) =
1 - i
5 @0 + a, cosnz(m/L) + b, sinnx(xw/L)
n=1

(an, b, constants)

a, = %/_de f(x)cosnz(n/L)

b, = %/L dz f(x)sin nx (w/L)

(generally f is complex-valued and a,, b, are complex numbers).

FOURIER SERIES:
Consider function f(z) definedon [— L, L].

Let L*[—L, L] = square integrable functions

_ {f: LI — @‘ /LLd:cfQ(x)|<oo}

where C = complex numbers. Then L? forms a Hilbert space.

Basis for Hilbert space:

{ % cosnz(m/L), \%sin nx(mw/L) }

(together with the constant function 1/+/2L).



These vectors form an orthonormal basis for L? (constants 1/ ﬁ give
length 1).

1. Recall the complex form of Fourier series:

Equivalent representation:

Canuse Euler's formula €™ = cosb +isinb. Can show similarly that the
family

1 . n=oo
6m:z:(ﬂ'/L)
V2L e o
L cosnz(m/L) + ! sinnz (/L) )
= — nx(m —=SINnx (7
V2L vV 2L e o

is orthonormal basis for 2.

Function f(z) can be written

F@) = edule)

where o
L
Cn = <¢nf> = /Ld:L‘ On(x) f(2),
where
bn(x) = n'" basis element = L e"("/L)

V2L

2. Recall derivation of the Fourier transform from Fourier series:

We start with function f(z) on (—L,L):



fig 2

f(x) = Z Cn¢n<x) = Z Cnemx<ﬂ/L)/\/i

n=—oo n=—oo

Let &, =nn/L; let Af=n/L;

let c(6,) = ev/27/ (V2L AS).

Then:

- CYNGYs

(c/V/2L) €

nzoocn/(f Ag)e A
Z en/2m/ (V2LAE) e AL,

n=—oo

Z gn w:f Af

n=——oo

[
|
g

n

Noteas L — oo, we have A¢ — 0, and



c(&) = Cn\/%/(\/iAg)
_ / " i f(2) 6u(@) - V2r/ (V2L AE)

—L

L
_ d$f - efinx(ﬂ'/L)
IRSEE v

/L \/% —inx(m/L)

S

Ld:vf(m) 2L(x/L) e

_1 ) |
= \/—2_7 /_L dz f(x) e @

Now (informally) take the limit L — oo. The interval becomes
[— L, L] — (— 00,00).
We have
1 %

r) = —— c e'n
f(x) Ner > (&) e AL

n=——oo

— JZ—W/_Z(:@)

Finally, from above

—L ' x f(x) et
c(f)—m/Ld f(x)

§

1 e 1T

Thus, the informal arguments give that in the limit, we can write



) e’ dg,

- [

where ¢(&) (called Fourier transform of f)
IS

dz f(x

=75 /..

(like Fourier series with sums replaced by integrals over the real line).

Note: can prove that writing f(x) in the aboveintegral form is valid for
arbitrary f € L?( — 0o, 00).

3. FREQUENCY CONTENT AND GIBBS PHENOMENON

Consider Fourier series of a function  f(z) which is discontinuous at
z=0. Eg.if f(z) = .

the first few partial sums of the Fourier series of f look like this:

5terms:

4sinx  4sin3x  4sin bz
+ +
™ 3T 5%8
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10 terms of Fourier series:

4sinx  4sin3xz  4sSinbx
+ +

T 3 5%
2,
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00/

4sin 10z
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20 terms:



40 terms:
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Note that there are larger errors appearing near the “singularity"

Specifically:

matter how many terms we take!

In general, singularities (discontinuities in  f(x)
high frequency components so that the Fourier series

o0

fla)=3" cae™/V/2m

n=—oo

“overshoot” of about 9% of the jump near singularity no

or its derivatives) cause



has large ¢,, for n large (bad for convergence).

But notice that the singularities are in only one point, but cause all the ¢, to
be too large.

Wavelets deal with the problem of localization of singularities, since they
are localized.

Advantages of Fourier series:
e “Frequency content” displayed in sizes of the coefficients a; and by.

e Easy to write derivatives of f in terms of series (and use to solve
differential equations)

Fourier series are a natural for differentiation.
Equivalently, sines and cosines are “eigenvectors” of the derivative operator
d
%.
Disadvantages:
e Usual Fourier transform or series not well-adapted for time-frequency
analysis (i.e., if high frequencies are there, then we have large a; and by
for £ = 100. But what part of the function has the high frequencies?
Where x < 0? Where 2 <z < 3?
Possible solution:

Sliding Fourier transform -

gfx) gix - .icxo J

Jx)

r

fig 4



Thus first multiply  f(z) by a “window” g(z — kz(), and then take a
look at the Fourier series or take Fourier transform: look at

,/_L du f(x) gin(7) = /LL dx f(x) g(x — kxo)e’™™ = cy,

L _
Note however: the functions g;z(x) = g(x — kx()e™* are not
orthonormal like sines and cosines; do not form a nice basis as in Fourier
series; need something better.
4. The wavelet transform

Try: Wavelet transform - first fix an appropriate function h(z).

=L Ax)
1.5
1
0.5
. . . W N
—‘i\ﬂzﬂé\ 0s 1 15 2
0.5
-1

Then form all possible translations by integers, and all possible “stretchings”
by powers of 2:

hj(x) = 272h(27x — k)

(27/2 is just a normalization constant)

10
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fig. 5: A(2x) and h(4x — 3)
Let
Cik = /da:f(m) hjk(z).
If h chosen properly, then can get back f fromthe cj.:

f@) = cjthjp()

Ik

These new functions and coefficients are easier to manage. Sometimes
much better.

Advantages over windowed Fourier transform:

o Coefficients c;, are all real

e For high frequencies (j large), the functions h;,(t) have good
localization (they get thinner as j — oo; see above diagram). Thus short
lived (i.e. of small duration in z) high frequency components can be seen
from wavelet analysis, but not from windowed Fourier transform.

Note hj has width of order 277, and is centered about k277 (see
diagram earlier).

DISCRETE WAVELET EXPANSIONS:

11



Take a basic function h(z) (the basic wavelet);

=L 2z
15
1
0.5
. . . o ad N %
—w o5t 1,/ 15 2
0.5
1
fig 6

let
hi(x) = 272h(27z — k).

Form discrete wavelet coefficients:
i = / d £(2) his(@) = (F, hi).

Questions:

e Do the coefficients c;;, characterize f?
e Canweexpand f inan expansion of the
hji?

e What properties must A have for this to happen?

e How can we reconstruct f in a numerically stable way from knowing
Cjk?
We will show: It is possible to find a function & such that the functions h
formsuch a perfect basis for the functions on R .

That is, the functions h;;, are orthonormal:

12



<hjk; hj’k’> = /hw(.f)hﬂy([lf)d.f =0
unless j=4 and k=K.
And any function f(z) can be represented by the functions h

fla) =Y e h(@).

7,k
So: just like Fourier series, but the h;;, have better properties (e.g., they are
non-zero only on a small sub-interval, i.e., compactly supported)
5. A SIMPLE EXAMPLE: HAAR
WAVELETS

Motivation: suppose we have a basic function

1if0<z<1 . .
$(2) _{ Ootherwise  DoSic Pixel”

We wish to build all other functions out of this pixel and translates ¢(z — k)

¢l x) ¢ (x- 3

fig 7. ¢ and its translates

Linear combinations of the ¢(x — k):

flz) =26(x) +3p(x — 1) = 2¢(x — 2) + 4¢(x - 3)

13
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fig 8: a linear combination of ¢(x — k)

[Note that any function which is constant on the integers can be written in
such a form:]

Given function f(z), approximate f(x) by a linear combination of

¢z — k).

-4 - & 4

fig 9: approximation of f(x) using the pixel ¢(x) and its translates.

Define V; = all square integrable functions of the form

g(@) = arp(z — k)
k

= all square integrable functions which are constant on integer
intervals

14
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fig 10: a function in Vj

To get better approximations, shrink the pixel :

fig 11: ¢(z), ¢(22), and ¢(2%x)

-4 - i 3

fig 12: approximation of f(x) by translates of ¢(2z).
Define

V7 = all square integrable functions of the form

g(x) = Zakgb@x — k)

k

= all square integrable functions which are constant on all half-
integers

15
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fig 13: Function in V;

Define V5 = sg. int. functions

g(x) = Zakgb(22:v — k)

k

= s@. int. fns which are constant on quarter integer intervals

fig 14: function in V;

Generally define V; = all square integrable functions of the form

g(x) = Zakgb(Qjac — k)

k

16



= all square integrable functions which are constant on 2=/ length intervals

[note if j is negative the intervals are of length greater than 1].

17



2. Haar Wavelets, General Theory

1. The Haar wavelet

Now define the desired wavelet v (x)

{1ﬁogx§1p

—1if1/2<z<1
0 otherwise

Or r 15

fig 15: ¢ (z)

Now define family of Haar wavelets by translating:

15

0.5

2-

1f

and stretching:

2345j

fig16: oz —5) = dos

18



BN w b

05 0.5 15

_4,
fig 17: 23/24(2%z — 7) = 437
In general:
Vi = 2292 — k)

Show Haar wavelets are orthogonal, i.e.,

o0

(Wiks Yyn) E/_ dz ()Y (x) =0

o)

if 7445 or k#£EK:
(i) if j=74,k#K"
(i, byre) =0
because 1, =0 wherever ;s # 0 and vice-versa.
(i) if g # 7"
(i, Yy ) = 0

because:

19
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= integral (¢, Yyw) is 0.

2. Can any function be represented as a combination of Haar wavelets?
[A general approach:]

Recall:

V; = square int. functions of form Zak¢(2ja: — k)
k

= square int. functions constant on dyadic intervals of length 277

[note if j is negative the intervals are of length greater than 1:]
V_1 = functions constant on intervals of length 2

V_o = functions constant on intervals of length 4

20



fig. 19: function in V; (j = 2)
We have:
(a) VoV VocVic Vo C Vil

[i.e., piecewise constant on integers = piecewise constant on half-integers,
etc.]

Fig. 20: Relationship of the nested spaces V;

(b) nV, ={0} (only 0 function in all spaces)

21



[if a function is in all the spaces, then it must be constant on arbitrarily large
intervals = must be everywhere constant; also must be square integrable;
so must be 0].

(c) UV, isdenseinL%(R)
[i.e. the collection of all functions of this form can approximate any function
f(@)]

Proof: First consider a function of the form f(x) = x(, (). Assume
thata = k/2" — ay,and b = ¢/2" + by, where a1, b; < 1/2",

1l {x)
gix)

i Mzn f;’?nb

fig 21: Relationship of a, b with k£/2" and ¢/2".

Let

9(T) = Xry2n,0/20(2) € UVJ
J

Then

If =gl :/da:(f—g)2 = area under f — g < 2/2"

22
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fig 22: areaunder f — g

Since n is arbitrary, | f—g¢g | can be made arbitrarily small. Thus
arbitrary char. functions f can be well-approximated by functions

g9(z) € UVi.
Now if f(x) is a step function:

4t

I N

A
-

fig 23: step function

We can write

f(&) =) ¢iXfa.p(x) = linear combination of char. functions.

?

So by above argument, step functions f can be approximated arbitrarily well
by g € UVJ
J
Now step functions are dense in L?(R) (see R&S, problem 11.2), so

that JV; must be dense in L*(R). O
J

(d) f(l’) S Vn = f(2$) € Vn—H

23



[because a function constant on intervals of length 2=" when shrunk is
constant on intervals of length 2-"~1]

€ fl@)eVo = [flz—k) eV

[i.e. translating a function by an integer does not change that it is constant on
integer intervals]

(f) There is an orthogonal basis for the space V in the family of functions

bor = ¢z — k)

where k varies over the integers. This function ¢ is (in this case) ¢
X[O,l}(x>'

¢ is called a scaling function.

Definition: A sequence of spaces {V;} together with a scaling function ¢
which generates V;, so that (a) - (f) above are satisfied, is called a
multiresolution analysis.

3. Some more Hilbert space theory

Recall:  Two subspaces M; and M, of vector space V' are orthogonal if
every vector wy € M is perpendicular to every vector wy € M.

Ex: Consider V = L?>(—n,w). Then let
My ={f(z): f(z)= Zancos na}
n=0

be the set of Fourier series with cosine functions only. Let

My ={f(z): f(z) = ibnsin nx}

be the set of Fourier series with sin functions only.

24



Then if f{ = a,c0s nx € M; and if f, = b,sinkx € M,, then using
n=1 k=1
usual arguments:

(f1, f2) = ianbk(cos nx,sinkx) = 0

n=1

Thus M is orthogonal to M.

Recall: A vector space V is a direct sum My & M, of subspaces M, M, if
every vector v € V' can be written uniquely as a sum of vectors w; € M;
and wy € Ms.

V' is an orthogonal direct sum M; & M, if the above holds and in addition
M, and M, are orthogonal to each other.

Ex: IfV =R and
M; =z —yplane = {(z,y,0) : z,y € R}

My = z —axis = {(0,0,2) : z € R},

then every vector (z,y,z) € V' can be written uniquely as a sum of
(x,y,0) € M; and (0,0, z) € M, so that V' is an orthogonal direct sum
M, & M.

Ex: V = L*[—m, x]. Then every function f(z) can be written uniquely as
f(z) = Zancos nx + ansin kx
n=0 k=1

[note first sum in M; and second in M5]

Thus L? = M; @ M, is an orthogonal direct sum. Note: not hard to show
that

M, = even functions in L2

M, = odd functions in >

25



[thus L? is an orthogonal direct sum of even functions and odd functions]
Theorem 1: If Vis a Hilbert space and if M; 1. M, and V' = M; + Mo,
e, VoeV 3 m; € M; st. v=m;+mo, then V = M; & M, iIs an
orthogonal direct sum of M; and M,

Pf: In exercises.

Note: no assumption of uniqueness of v; necessary above.

Def: If V. =W; & W, is an orthogonal direct sum, we also write
W1:V@W2; WQZV@W1.
Recall: Given asubspace M C V,

M~ = vectors which are perpendicular to everything in M

={veV:vlLlwYweW}

Ex: If V=R3 and W = z-y plane, then W' = z-axis
Ex: If V =L% thenif W = even functions, W+ = odd functions.

Pf. exercise
Recall (R&S, Theorem [1.3):  Given a complete inner product space V'
and a complete subspace M, then V is an orthogonal direct sum of M
and M+
4. Back to wavelets:
Recall: | .

e VV; = functions constant on dyadic intervals[k277, (k + 1)27].

o ..VoCcV,,CcVyCVi CVW...

Since V, C V4, thereis asubspace W, = Vi & Vj such that V, & W, = V1.

26



W = z-ams

P = xy plane

fig 24:. Relationship of 1{, and W, : V; asthe z-y plane and W, as the
z axis.. VopaeW,=1V, =R3.

Similarly define
W=V, V.
Generally:
W1 =V, oV
Then relationships are:
Vo CVoy CcVp CcVp C V.
W_o W_1 Wy W)

Also note, say, for V3:
Vs = Vo & Wy

= VieW &W,
== ‘/0 @W() EBW1€B WQ

=V, eW_ W, W, & W,

Thus if v3 € V3, we have:

27



V3 — UQ%—U&
=1 +wi; +ws
= vy twy +twy +wsq

=v-1 tw_1 +wy +w; +wy,

with v; € V; and w; € W;.
[successively decomposing the v into another v and a w].

In general :

2
V3 = V_p + Z Wk - 1)

k=—n

Now let n — oo . Since all vectors in above sum orthogonal, we have (see
exercises):

2
losll* = llo-all® + > llwel®

k=—n

Thus

2
> lwel® < Jlos)?

k=—n
V¥ n, SO

2
> lwil? < oo

k=—00

Lemma: Ina Hilbertspace H, if w, are orthogonal vectors and the sum

S Jwe|]? < oo, then the sum >~ wy, converges.
k k
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N
Pf:  We can show that the sum > w;. forms a Cauchy sequence by noting

k=1
if N > M:
N M N N
2 2 2
I wr =Y wel® = 1) will® =) el 572 0
k=1 k=1 k=M+1 k=M+1

Thus we have a Cauchy sequence. The sequence must converge (H is

complete), and so > wy, exists. [
k=1

From above:

2
V_p = V3 — g Wy, .

k=—n

2
Letting n — oo, get wv_, —3 v3 — > wg. Thus vectors v_, have
k=—00
limitas n — o0 : v, — V_x.

But notice

=

Von €EVan N Vopin NVopga o= (] Vi

k=—n

Thus v_,, € intersection of all V,,'s =
= V_ = 0 (by condition (b) on spaces V;).

Thus taking the limitas n — oo in (1) :

2
o=+ Y w (1)

k=—n

get

29



2
Vs = E Wi .

k=—00

So by definition of direct sum:

2
Vi=..WoaeWiaW, oW oW = @ W,

k=—00

I.e., every vector in V3 can be uniquely expressed as a sum of vectors in the
W ;. Further this is an orthogonal direct sum since W;'s orthogonal.

Generally:
n—1
Vn = ...W_2 QP W_1 SP) Wo P, W1 %) W2 D ... @Wn—l :@ Wk
k=—oc0
Now note
L2 — ‘/3 D ‘/SJ_
=V, & V'

=V; & Wy @ Vi

Thus comparing above get

Vit =W @ V5

Similarly,
Vi =W, @ Vit
So
Vit =Wy @ Wy @ Vi
Generally:

30



Vii=Wso W, @ Ws ... 0W, & V.,

Letting n — oo and using same arguments, we see that the V.=,
components “goto 0”as n — oo, So that

V3J' =Ws Wy W5 D ...
Thus:
L’ = V3 EBV:;J‘:...W_2 W 1 eWy W, &Wy d...

[Thus every function in L? can be uniquely written as a sum of functions in
the W;'s].
Thus:

Theorem: Every vector v € L?(—o00,00) can be uniquely expressed as a
sum

o0
> w; where w; € W;.

Jj=—00

Conclusion - relationship of V; and W

5. What are the W; spaces?

Consider W,.
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Claim: Wy, = A = functions which are constant on half-integers and take
equal and opposite values on half of each integer interval.

3

2

sl I
IR

i

fig 24: Typical functionin A

.

Proof: Will show that with above definition of A,
Vo A=W,
and that V[, and A are orthogonal. Then it will follow that
A=VioVy=W,,

First to show V[, and A are orthogonal: let f € V,and g € A. Then f looks
like:
fix)

| : | gx)
T
O e

-4

fig 24: f(x) € Vo; g(x) € Wy

Thus
= [ g = </+/+/+/+> Fla)g(a)d
=0
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since f(x)g(x) takes on equal and opposite values on each half of every
integer interval above, and so integrates to 0 on each interval.

Thus f and g orthogonal, and so V{, and A are orthogonal.

Next will show that if f € Vi, then f = f; + go, where fy € Vo and gy € A
(which is all that's left to show).

Let f € V4. Then f is constant on half integer intervals:

ﬁ u.?jﬁ:uﬂuﬂu

4

-6

8

fig 25: f(z) e

Define f; to be the function which is constant on each integer interval, and
whose value is the average of the two values of f(x) on that interval:

[ ] fo ik . Fd
|__

=

-4 —.lg — & L1 -

-t

-4

fig 26: fy(x) as related to f(x).
Then clearly fy(z) is constant on integer intervals, and so is in Vj.

Now define go(x) = f(x) — fo(z) :
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fig 27: go(x) = f(z) — fo(w)

Then clearly g, takes on equal and opposite values on each half of every
integer interval, and so is in A. Thus we have: for f(x) € V1,

f(@) = fo(z) + go(2),
where f, € Vopand go € A. Thus V; =V & A by Theorem 1 above.
Thus A=V &V, = Wy, s0 A =W,.

Thus W, = functions which take on equal and opposite values on each half
of an integer interval, as desired. [J

Similarly, can show:

W = functions which take on equal and opposite values on each half of the
dyadic interval of length 2=/ and are square integrable:

8-
6L

4l

H AL e A
UHHMW“HU

fig 28: typical functionin W, (j=1)
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6 What is a basis for the space W;?

Consider

W, = functions which take equal and opposite values on each integer interval

What is a basis for this space? Let

1 ifo<z<1/2
‘/’(x)_{q if 1/2<a<1

Claim a basis for Wy is {¢(x — k) } 32 _ .
Note linear combinations of ¢ (xz — k) look like:

g(x) = 2¢(x) + 3(x — 1) — 2¢p(x — 2) + 2¢(z — 3).

e dl 1L
HiRIEN

fig 29: graph of g(x).

I.LE., linear combinations of translates ¢ (x — k) = functions equal and
opposite on each half of every integer interval.

Can easily conclude:

W, = functions in L? equal and opposite on integer intervals

= functions in L? which are linear combinations of translates y(x — k).
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Also easily seen translates ¢)(xz — k) are orthonormal.

Conclude: {¢(x — k)} form orthonormal basis for .

Similarly can show {2'/2¢(2z — k)},. form orthonormal basis for T7/;.
{22/24)(222 — k)},, form orthonormal basis for .

Generally,
(2024272 — k)}5°_ . form orthonormal basis for ;.

Define ;1. (v) = 29/2(2/z — k).
Recall every function f € L? can be written

f=2 v

J
where w; € W;. But each w; can be written
wy =Y _axth(x)
k
[note j fixed above replace a;, by aj; since need to keep track of j].

S0:

=D @)

Furthermore we have shown the 1, orthonormal. Conclude they form
orthonormal basis for L2.

7. Example of a wavelet expansion:

2

a2 if0<z<1 : :
Let f(x) = {O otherwise Find wavelet expansion.
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8. Some more Fourier analysis:

Recall Fourier transform (use w instead of £ for Fourier variable):

1 > iTw
)= / T d

7 1 e —iTw
f(w)Iﬁ/oodxf(af) e,
[earlier had f(w) = c(w)]

Write f(w) = Fourier transform of f(w) = F(f).
9. Plancherel theorem:

Plancharel Theorem:
(i) The Fourier transform is a one to one correspondence from L? to itself.

That is, for every function f(z) € L? there is a unique L? function which is
its Fourier transform, and for every function g(w) € L? there is a unique
L? function which it is the Fourier transform of.

(i) The Fourier transform preserves inner products, i.e., if}’ is the FT of f
and g is the FT of g, then (F(w),3(w)) = (f(2), g(x)).
(iif) Thus

1F@)I* = [F )]

Now for a function f € L? [ — =, «], consider the Fourier series of f, given
by

o0

§ : Cr eikx

k=—0o0
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The above theorem has analog on [—m,n]. Theorem below follows

immediately from fact that {e*/+/27}>° __ form orthonormal basis for
L?[—7, 7).

Plancharel Theorem for Fourier series:

(i)  The correspondence between functions f € L?[—m,w] and the
coefficients {c;} of their Fourier series is a one to one correspondence, if

we restrict Y c? < oco. Thatis, for every f € L?[ — , ] there is a unique
k

series of square summable Fourier coefficients {c.} of f such that
> |ex|* < co. Conversely for every square summable sequence {c;} there
k

is a unique function f € L?[ — m, x| such that {c.} are the coefficients of
the Fourier series of f.

(ii) Furthermore, > |lck || 2 = 5=|If(2)]?
k
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3. General Wavelet Constructions

1. Other constructions:
Suppose we use another “pixel” function ¢(z):

15

0.5

05

fig 30: another pixel function

Can we use this to build approximations to other functions? Consider linear
combination:

20(x) +3¢(x — 1) — 2¢(x — 2) + ¢(x — 3)

4

3

2

-1 1 2 4 5
-1
2

fig 31: graph of linear combination of translates of ¢

Note we can try to approximate functions with other pixel functions.

Question: Can we repeat the above process with this pixel (scaling)
function? What would be the corresponding wavelet?
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Assumptions: |¢(x)| has finite integral and [ ¢(x)dz # 0.

More general construction:

As before define V) = all L? linear combinations of ¢ and its translates:

= {f(x) =) a ¢Ok(x)‘ ar €R; f € L*}.
k

with
box(z) = ¢p(z — k).
and
Vi={f(z) =) aréu(x)lar €R; f € L*}.
k
d1i(x) = 21/2 o2z — k)
etc.

We want the same theory as earlier.
[Note V}, no longer piecewise constant functions]
Recall condition

d) flz) €Vh = f(22) € Vo

(2)

3)

This is automatically true by definition of V,,, since if f(z) € Vj, then
f has the form of an element of (2). Then f(2x) has form of an element of

(3),and f(2z) € V1.

Similarly can be shown that (d) holds for any pair of spaces V,, and V,,, of

above form.

2. Some basic properties of F.T.:
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Assume that f = F(f). Then

(@) F(f(z—c))(w) = e f(w)
(b) F(f(cx)) = Lf(w/ec)

Proofs: Exercises.
3. Orthogonality of the ¢'s:

Another property of V; :

(f) The basis {¢(x — k)} for V; is orthogonal, i.e. (¢p(z — k), p(z — £)) =0
for k # ¢.

Not automatic. Let F(f) = F.T.of f = f(w).

Require a condition on ¢ of the following sort: if k # ¢, then (note use w as
Fourier variable) :

0= (p(z —k),d(x —£)) = (F(o(z — k), Fp(x = 1))

(
(e G (w), e B(w))
= [ B

oo

Thus conclude if m # 0,

o0

— [ em )P d

o0

(o o ) emaras

(n+1)-27
_Z/ me\qb )‘de

n=——oo
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2
—Z/ ¢\ (w — 2n) [ duw

n=—oo

/277 Zm“’i 16(w — 2nm)|? dw

[since we can show that the integral of the absolute sum converges because
S [¢(w — 2n7)|? dw absolutely integrable; see exercises]

n=——oo

Conclude function 3 |¢(w — 2nx)|? on [0,2x] isin L? because it has

n=—oo

square summable Fourier coefficients (in fact they are 0 if m # 0).

o0

Further > [¢(w —2n7)|? is 27- periodic in w, and has a Fourier series
e} R [©¢) ]
Z |p(w—2n7)|* = Z Cpp €'
n=—oo m=—00
where
1 2 . 00 .
Cn = 5 i e_zm“’nzoo |p(w —2nm)|*dw=0 if m#O0.
And
=g [ Bl =5 [ B
21 J_ 0 27 J_
= — dr =
om | (2)"dz =
Thus
= 1
5 a-mmn = 3 e =
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This condition equivalent to orthonormality of {¢(x — k)}.
VoC Vi:

Recall the condition

@ Vo cW

What must be true of ¢ for this to hold in general? This says that every
function in V4 isin V4. Thus since ¢(x) € Vj, it follows ¢(z) € V3, i.e.

¢(x) = linear combination of translates of \/§¢(2x)
= hi dip(x) (4)
k

Sue(x) = 229 (2x — k)
[recall normalization constant \/5 is so we have unit L? norm].
Ex: If ¢(x) = Haar wavelet, then
¢(x) = o(2z) + ¢(22 — 1)

1

2 $10(z) +

1

7 ¢11(z)

= hloqblo(x) + h11¢11<x)
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2.5

15

0.5

;2 ;1 1 2
fig 32: ¢(z) = ¢(2x) + ¢(2x — 1)
Thus in this case all A's are 0 except Ay and hqq;

1
hi1 =

= 1.
\/57
Note in general that since this is an orthonormal expansion,

th = [lp(2)|I* <

4. What must be true of the scaling function for (1) above to hold?

Thus in general we have:

dx) = Y hdu(x) = Jim. th¢1k ©)
k=—0o0
in 2 norm. Denote
N
> hidir(z) = Fy(x)
k=—N
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Specifically,

lo(x Z hie¢ri(x)|| — 0.

[recall F is Fourier transform]
Corollary of Plancherel Theorem:
Corollary: The Fourier transform is a bounded linear transformation. In

particular, if the sequence of functions {Fy(z)} converges in L? norm,
then

F( lim Fy)(w) = lim F(Fy)()

in L2 norm, i.e., Fourier transforms commute with limits.

Thus since oo sums are limits and F is linear:

f( i hidrie(x ) th (P11 (w
K=—00

k=—00

[i.e., 7 commutes with co sums]
Let F(¢)(w) = ¢(w). Then generally:
F(op)w) = F(2Pp(2x — k))(w)

=22 F(¢(2z — k))(w)

[recall dilation properties of Fourier transform earlier]
= 22 L F(¢( — b)) (w/2)

[recall translation by & pulls out an e~**]

= 2792 M F () (w/2)

— 92— J/2 —zwk/QJ (w/2j)
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Specifically for j = 1:

F(ow)(w) = V2™ - 3(w/2)

Recall (3):

= f: hi ()

k=—o0

Fourier transforming both sides:

= 3 b By

k=—o0

Define

w/2 Z hy —— e—zk (w/2)

k=—o00
note m is 27- periodic — Fourier series of m(w/2) given above.
Note m(w) € L?[0,2x], since > h} < oco.
k
Thus by (5):
$(w) = m(w/2) $(w/2).
with m( - ) a 27-periodic L? function.

[Note: This condition exactly summarizes our original demand that V}
c W]

Note if Vy C Vi, then it follows (same arguments) thatl; C V5, and
Vj C Vjq1 in general.
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5. Some preliminaries:

Given a Hilbert space H and a closed subspace V, for f € H write
f=v+ot

where v € V and v+ € V1.

Definition: The operator P defined by
Pf=Plv+ov)=v

Is the orthogonal projection onto V.
Note P is a bounded linear operator (see exercises).
Easy to check that | P|| = 1if P # 0 (see exercises).

Ex: V =R3 P(x,y,z2) = (x,y,0) = is the orthogonal projection onto the
x—1y plane.

P(x,y,2) = (0,0, z) = orthogonal projection onto z axis.

(%2

Ml 0 = Pays

Ex: V C L?*[—m, ] isthe even functions. Then for f € L?

flx) + f(=x)
2

Pf(z) = feven(x) =
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(see exercises).

6. How to construct the wavelet?

Recall we have now given conditions on the scaling function:
Condition

@ ...VacViacWcVicVacC V..,

IS equivalent to:

(i) 6(w) = mo(w/2)6(w/2),

where m, is a function of period 2.

Condition

(f) There is an orthogonal basis for the space V in the family of functions

ok = P(x — k)

IS equivalent to:

.. 1
(i) Z w+ 27k)| =9
Condition

(0) NVi={0}

can also be shown to follow from (ii) as follows:

Proposition: If ¢ € L*(R) and satisfies (ii), then ,ﬁZVj = {0}.
je

Proof: Denote C. to be compactly supported continuous functions.
Let f € _ﬂZVj. Let € > 0 be arbitrarily small. By arguments as in problem
j€

1.2 in R&S, C. is dense in L2(IR), so that there exists an ]N‘ € C. with
If = fIl <e,
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with || - || denoting L? norm. Let

P; = orthogonal projection onto V.
Then since f € V:
If = Pifl = IPif = Pifl = I1Pi(f = DI < If = fll e
Thus by triangle inequality
IFIL < ILf = Bif |+ 1B < e+ 1P F-
Since Pj}“ € V;, we have
Pif = cubpl(x).
k
where cj, = (¢ji, f) (recall {¢;.(x)}2_ is an orthonormal basis for V).

Thusif || flec = suplf(z)],
IBfIP = lewl® =D 1 P
k k

2

[assuming f is supported in [—R, R] ]

2
SIS ( [ e k)dx)

k

[ox@ F(w) s

[using Schwartz inequality (a(z)b(z)) < |la(x)||||b(x)|[]

<VIFRY [ ttde (e bPde
k [_R7R] [_RrR]

—2|fIE2RY [ (e(2in - b)Pds
k [_RaR}
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;z/:2jarfk ~ 019 9
Z IR 2R / 16(y)|2dy

SR_’]‘

[where Sk ;= Ugezlk — 2R, k + 2/R] (note we replaced k¥ — —Fkin the
union) assuming j large and negative, so 27/R < % Note that then the &

sum becomes a sum over disjoint intervals after the change of variables
above, and we therefore replace a sum over k by a union over these
intervals, as above]

— IfI 2R / X, ()| 6(y) Pdy — 0

j— —o0

by the dominated convergence theorem, since if y ¢ Z, xs,, (y) — 0.

J— 0

Thus by (7), we have for j large and negative and all ¢ > 0 :
IFIL <11 = Pifll + 1Pf 1| < e+ 1P FI| < 2e.
Thus || f|l=0and f =0. O

Condition

(c) UV, isdenseinL%(R)

also follows from (ii):

Proposition: If ¢ € L?(R) and satisfies (ii), then _UZVj = L*(R).
je

Proof: Similarly technical proof.
Condition
d) flz)eVn = [(2z) € Vin
is automatic from the definition of the V,.
Condition

€ fl@)eV = [fl@—k) e W
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is also automatic from definition.
Thus we conclude:

Theorem: Conditions (i) and (ii) above are necessary and sufficient for the
spaces {V;} and scaling function ¢ to form a multiresolution analysis.

Thus if (i), (ii) are satisfied for ¢ and we define the spaces V; as usual, the

spaces will satisfy properties (a) - (f) of a multiresolution analysis.

Recall: orthonormality of translates {¢(z — k) }rez iS equivalent to:

(i) S [Bw 4+ 2mk) = o
k

Rewrite (ii):

2 Imo(w/2 + k)2 [B(w/2 + Th))? = &

= 2= Llmo(w' + k)P oo’ + mh)[?
k
[ = w/2]
=3 |mo(w’ + k) 2[$(w’ + k)|

k even

+ 3 [mo(w’ + mk)||¢(w’ + k)|
k odd

= Y |lmo(w' + 7 - 2) | |p(w’ + 7 - 2k)|
k
+ S mo(w’ + 72k 4+ 1))2 [¢(w’ + 7(2k + 1)
k

" E g ()Y@ + 2k) 2+ fmo(w’ + )2 _[(w + 7+ 2k)
I k
»
y (i) \mo(w’)|2 ) % + [mo(w’ -|—7T)‘2 . %

This implies that
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[mo(w")|* + Jmo(w’ + )" = 1.

What about wavelets? Recall we define W; =V, ©V;. We now know
that {¢;,(x)} form basis for V. The wavelets ¢;; will form basis for W;.
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4. More on General Constructions
1. What are );;,?

[Recall norms and inner products of functions are preserved when we take
Fourier transform. Let's take FT to see.]

Note if we find W, = V; & 1}, then we will be done.
[Let's look at Fourier transforms of functions in these spaces:]

Note that if f € Vj, then
fl) =) arp(x—k) =) ar poi(x)
k k
gives by F.T.:

?(w) = Z ax F(dox(z)) = Zake‘i’“"@(w) = mﬂw)@(w)
k k

where

my(w) = Zake_ikw.
k

is a 27 periodic L?[0, 27] function which depends on f. In fact reversing
argument shows (9) and (10) are equivalent.

Similarly can show under Fourier transform that ¢ € V/; equivalent to:

~

9(w) = my(w/2) p(w/2).
with m,( - ) some other 27 periodic function on L?[0, 27].
Notice functions m; and m, both have period 27 (look at their Fourier
series). Also note above steps are reversible, so equation (10) implies (9) by
reverse argument.

Thus:
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feVi & f=mpw/2) dw/2)

Recall: we want to characterize f € Wj; such an f has the property that
feViand f L V.

Now note:

fLVy & fLouVke T L b,

& /OO F(w) ei“’kmdw =0

o 0—/ Fw) e 3(w) dw—Z/MH ) ¢t 3w)

2
= Z/ F(w + 2rm) e @2 G (b + 2rm) dw

2m
/ Zk”Zf (w + 27m) d(w + 27m) dw .

where above identities hold for all .

Hence [viewing sum as some function of w]

Z}“(w + 27m) $(w + 27m) = 0.

Thus:

0=3"F(w+ 2rm) ¢(w + 27wm)

= %:mf((w + 27m)/2)d((w + 27m) /2)mo((w + 27m) /2)d((w + 27m) /2)

= %mf(w/z + 7m) (w2 + m) mo(w/2 + 7m)d(w/2 + 7m)
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=>  + > myp(w/2+4mm) 5(w/2+7rm)

meven modd

~

x mo(w/2+mm)od(w/2 + mm)

= S mp(w/2 + 2mm) (w/2 + 2rm)mo(w/2 + 2mm) (w/2 + 2mm)

m

~

+ > - mp(w/2 + 7+ 2rm)p(w2+m+2Tm)

~

x my(w/2 4+ 74 2mm)p(w/2 + 7+ 2mm)

= mf(w/Z)mo(w/Q)%: d(w/2 + 27m) d(w/2 + 27m)

+ my(w2 4+ m)mo(w/2 + 7)Y (w/2 + 7 + 2m) (w2 + 7 + 27m)
= my(w/2)mo(w/2)2 |$(w/2 + 2mm) |

+ my (w2 + m)mo(w/2 + w); 1(w/2 + 7 + 27m) |2

= (my(w/2)my(w/2) - 5= + my(w/2 4+ m)mo(w/2 + 7)) - 5=

(3) = my(w)mo(w’) + mp(w’ + m)my(w’ + ) =0

Thus (note my(w’) and my(w’ + ) cannot vanish together); let w’ — w :

my(w) = - m;ij(:)ﬂ mow + 7) = A(w) (@ + 7).
where
Aw) = - M Em
W= -

and so A\(w) is 27 periodic. Also,

55



Aw) + Mw+7) = — m%(f&f) - %)

combining fractions and using (3)

= 0.
Define v(2w) = Mw)e ™.
Then

V(2w +21) = Aw + ) e @)

— _AW)e e = Aw)e ™ = v(2w)

so v has period 2.

Thus F(w) = my(w/2)3(w/2) = A(w/2)mo(w/2 + ) d(w/2)

= v(w) &2 my(w/2 + ) P(w/2).

Thus we define the wavelet «(x) by its Fourier transform:
P(w) = e my(w/2 +7) d(w/2)

Thus

F(w) = v(w)d(w).
Going back in Fourier transform, we would get (compare with how we got
fw) =ms(w)d(w))

fl@) =) app(x — k).

k
where a;, are coefficients of the Fourier series of v(w), i.e.,

v(w) = Zakeik‘“.
F

To justify process of Fourier transformation as above, need to also show that
the coefficients ay, are square summable (i.e. >"|ax|* < 00), since we do not
k
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know whether Fourier transform properties which we have used in getting
are valid otherwise.

Note since a; are coefficients of Fourier series of v, we just need to show v

is square integrable on [0, 2] (recall this is equivalent to the a; being square
summable). To show that v is square integrable, note that with m as in

use m €L2[0,2n] o

00 > I dw |m¢(w)]?
VI LT dw AW)I? [mo(w + )P
= (I + ) NP o+ )
[substitute w’ = w — 7 in second integral; then rename w’ = w again]

:/ dw|)\(w)|2|m0(w+7r)|2+/ dw\)\(w+7r)|2|m0(w—i—27r)\2
0 0

[recall that by periodicity |m(w + 27)|* = |mg(w)|? and use (13)]

= [ @A (mofeo + 0 + o))
o2 /0 dos | A ()
_ /O o |(20)?

/:2 1 2
w=wl / oo | (w) ?
_ 2

Thus we have that oo > 02” dwl|v(w)|?, sothat v is square integrable, as
desired.
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This was only thing left to show ¥ (2z — k) span W,. Wish to show
also orthonormal. Use almost exactly the same argument as was used to
show the same for ¢(x — k):

Y lbw2mk)? =Y mo(w/2 + wk + 1) P d(w/2 + k)|
k k

[now break up the sum into even and odd k again and use the same method
as before]

S o4y ) mo(w/2 + 7k + ) 2@ (/2 + k)2

keven kodd

= Zk:|m0(w/2—|—7r-2k—|—7r)|2\$(w/2—|—7r-2k)\2
+ ij|m0(w/2 +re 2k + 1) + 1) |o(w/2 + 7 (2k + 1))
= [mo(w/2 + m)|* 2}{]5(&)/2 + - 2k) [
+ [mo(w/2)[? Zk;@(w/2+ﬂ- (2k + 1))/
g W BN (Imo (w/2 + )|” + [mo(w/2) ) - 55

By same arguments as used for ¢(x — k), it follows by W(x — k)
orthonormal.

This proves our choice of 1 gives a basis for W, as desired.
Specifically,

tor(z) = Pz — k)

form an orthogonal basis for W, (in fact can show their length is 1 so they
are orthonormal).
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In same way as for ¢, can show immediately that since functions in W; are
functions in W, stretched by factor 2/, the functions

Vi (x) = 22420z — k)

form a basis for W, (5 fixed, k varies).

Since L? =direct sum of the W, spaces, conclude functions
{1 ()} 35— over all integers j and & form orthonormal basis for L?.

Conclusion:
If we start with a pixel function ¢(x), which satisfies

(i) d(w) = mo(w/2)d(w/2) (with mg some 27-periodic function)

(i) Zk:|¢(w—|— 2k|? = %

then the set of spaces V; form a multiresolution analysis, i.e., satisfy
properties (a) - (f) from earlier.

Further, if define function () with Fourier transform:

~

D(w) = e my(w/2 + ) $(w/2)

(here my is from (i) above), then
Vi (x) = 20/ (272 — k).

form orthonormal basis for L2

[Next we'll construct some wavelets]

2. Additional remarks:

Note further that has another interpretation without Fourier
transform :

Recall the two scale equation:
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= hidu(x)

Also then we have (see eq. (5)) that if

Z hk —zkw,

then:

~

(w) = mo(w/2)$(w/2).

Then we have from

w(w)_ zw/2z zk (w/24m) ¢(W/2)
k*foo

_ zw/QZ zlmr zkw/? gb(w/Z)
k——oo

= > ihk(—n 'R w/2 G 0f2)

Rl (02 32

= > P BV sr 4 )
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where
0 :E—l—k(_ ) k—1 _ h_ B ( )k+1 standagform E—l—k(_l)kily

and (recall) h; defined by
z) = hroir(z)
k

3. Some comments on the scaling function:

Recall

$(w) = mo(w/2) p(w/2)

from earlier. This stated that the Fourier transform of ¢ and its stretched
version are related by some function mg(w/2), where mg is a periodic
function of period 27.

Lemma: The Fourier transform of an integrable function is continuous.
Proof: exercise

Assumption:  ¢(x) (the scaling function) is integrable (i.e., its absolute
value has a finite integral).

Fact: Under our assumptions, it can be shown that [~ dz ¢(z) =1
[proof is an exercise]

Consequence: A consequence of the above assumption is that the Fourier
transform ¢ (w) satisfies:

1 e}

$(0) = 7 | dr ¢(z) e "0 = \/_/ dz ¢(x \/?

Now recall we had

$(w) = mo(w/2)d(w/2)

for some periodic function m,. Replacing w by w/2 above:
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$(w/2) = mo(w/4)d(w/4);
Plugging into

~

d(w) = mo(w/2)mo(w/4)p(w/4).
Now taking and replacing w by w/4, and then plugging into

b (w) = mo(w/2)mo(w/4)mo(w/8)p(w/8).

Continuing this way n times, we get:

~

(w) = mo(w/2)mo(w/4)mo(w/8). .. mo(w/2")d(w/2").

or.

Now let n — oo on both sides of equation. Since $ IS continuous (above
assumption), we get

H(w/2) =, 3(0) = %277

Since the left side of converges as n — oo, the right side also
converges. After letting n — oo on both sides of

ﬂ:mmow?
0 g (w/2%),

S
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~ 1 S j
d(w) = \/—%Emo(wm ).

Conclusion: If we can find m((w), we can find the scaling function ¢.

4. Examples of wavelet constructions using this technique:

Haar wavelets: Recall that we chose the scaling function

1 fo<z<l1
¢(w) = {0 otherwise '

and then we defined spaces V.

From ¢ we constructed the wavelet ) whose translates and dilates form a
basis for L2

Such constructions can be made automatic if we use above observations.

Note first in Haar case:

—~ 1 1 . 1 —wx
B(w) = —/ L
0

V2o iw

1 1 [ e~ 1]
— i + —

o V2

_ 2 e—iw/? e—iw/Q B eiw/Q
/2w 21 21

2 )
— efzw/Q

V2w

For Haar wavelets we can find m(w) from:

$(w) = mo(w/2)d(w/2),

sin w/2.

SO
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o (0]9) — o(w) :167@/4 sinw/2
0(w/2) d(w/2) 2 sinw/4

_ le—iw/4 sin (2 - w/4)
sinw/4

N | —

— 2sinw/4 cos w/4
sinw/4

= % e~/ 9 cosw/4

Recall wavelet Fourier transform is:

~

4) P(w) = 2 mo(w/2 + ) d(w/2)

In this case

- , ‘ 4 - .
D(w) = /2 l@157/2) cos (/4 4 7 /2) e “Msinw/4.

V2mw

[using

cos (w/4+m/2) =cosw/4cosn/2 — sinw/4sinm/2 = —sinw/4]
49 ~ :
= - 2L egin2(w/4)

V2rw

Can check (below) this indeed is Fourier transform of usual Haar wavelet ),
except the complex conjugate (which means the original wavelet is reflected
about 0, i.e., translated and negated, which still yields a basis for Wj).

To check this, recall Haar wavelet:

1 ifo<z<1/2
w(x)_{—1 if 1/2<z<1
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Thus:

P(w) = ﬁ | e
_ \/%(/01/2+/1:2> W(@) e da

1 /2 1
= e "“dr — —/ e "“dx
\/27r/0 v 2w J1)2

2e /2 e 4]

— +
\/%iw \/ﬂiw

—iw/2 w/2
_ 2 (_e—iw/2+e—iw/2 (e +e /))

V2miw 2

9 . ,
= (—e‘“"/Q—l—e_“"/2 CosS w/2>

\/%z'w

9 . .
= (—e“"/Q + e~ w/? COS2-w/4>

\/ﬁiw

[using cos 2z = 1 — 2 sin? z]
2 , : .
= ( — T2 4 em /(] — 25In2w/4))

\/%iw

—4 : :
= (e"“’/Q Sln2w/4>

\/%iw
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49

V2rw

(e_i“’/z sin%/4)
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5. Constructing Wavelets

1. Meyer wavelets: another example -

Scaling function:

(1 if |o| <27/3

d(w) = —— cos[Zv(|w| —1)] if 27/3 < |w| <4rw/3
v 2”1 0 otherwise

[error in Daubechies : 3/4m instead of 3/27 inside v/]
where v is any infinitely differentiable non-negative function satisfying

0 ifx<0
viz)=<1 ifz>1

smooth transition in v from 0 to 1 as = goes from 0 to 1

and

fig 33: v(z)and v(1 — x)
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. S .
—dmi3 —2wi3 w3 dmis

fig 34: Fourier transform &B(w) of the Meyer scaling function

Need to verify necessary properties for a scaling function:

(i)
S 13w+ 2mk) 2 = 2i (21)
k

T
To see this, consider the two possible ranges of values of w:

(@) |w+ 2mki| < 27/3 for some k;. In that case (see diagram above):

Blwt2mhy) = ——:  B(w+ 2mk) = 0if k £ ky

Vor

since if |w + 27k;| < 27/3, then |w + 27k| > 47/3 for k # k;. Thus
holds because there is only one non-zero term in that sum.

(b) 27/3 < w+ 2wk; < 47/3 for some k;. In this case we also have
—4n/3 <w+2m(k; — 1) < —27/3.
Also, for all values k£ # k; or k; — 1, can calculate that
21k ¢ [—47/3,47/3],
SO

o(w+ 27mk) = 0.

So sum has only two non-zero terms:
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2> |$(w + 2mk)|* = 27r(|$(w + 27k |2 + [$(w + 27 (ky — 1)|2).
k

2
= C0S“ | —
_2V
2_77 3 2
=cos’|=v| —w+3k; —1)| + cos
|2\ 27 |
2_77 3 ] 2
=cos’|=v| —w+3k; —1 )| + cos
_2 7-[- -

2_77 3 ] 2
=cos’|—v| —w+3ky —1 )| + cos
|2\ 27 |

NS 3 1 o[
=cos’|=v| —w+3k; —1 )| + cos
|2\ 27 i
= cos? _Eu icu+3lc —1
o 27 o !
=1

Note that above |w + 27(k; —1)| = —

[

] + sin? Fy( 5
2

(i|w—|— 21k | — 1)] + cos® [zy<i]w—|— 2w(ky — 1)| — 1)]
2 2 \ 27

_7(%(—@ ok — 1)) — 1)]
(g +2)
g (1 _ V(l - (—%w— 3k, +2)))]

3

(o)

7'('
- —v

7'('
2 2

(w+ 2m(ky — 1)), since quantity in

parentheses always negative for our range of w. In next to last equality have

used cos (2 — z) = sin z.

Note since cases (a), (b) cover all possibilities for w (since they cover a
range of size 27 for w + 27k;), we are finished proving

Also need to verify:

(if)

$(w) = mo(w/2)d(w/2)

for some 2m-periodic my(w/2). Indeed, looking at pictures:
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-8w/3  —dw/3 ari3 813

fig 35: ¢(w) and ¢(w/2) (----)

ratio of these two looks like:

=3 473

fig. 361 G(w)/d(w/2) 21 ¢(w) in the interval [—27, 27].

ma

Note since ratio ¢(w)/d(w/2) = /27 ¢(w) in [—27, 27], we can define
(w)

mo(w/2) = = V27 §(w)

&)

(w/2)

if w e [—27, 27).

Definition ambiguous when numerator and denominator are 0.

Definition also ambiguous for w ¢ [—27, 27| since numerator and

denominator both 0. So define m(w/2) by periodic extension of above for
all real w

How to do that? Just add all possible translates of the bump &(w) to make it
4r-periodic:
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mo(w/2) = Z ¢ (w+ 47k).

Check:

mo(w/2)p(w/2) = Z b(w + 4mk) d(w/2)

k

—\/%¢ P (w/2)

= ()

where we have used the fact that ¢(w + 47k) has no overlap with ¢(w/2) if
k # 0.

[So we expect a full MRA.]

2. Construction of the Meyer wavelet

Standard construction:

~

P(w) = e mo(w/2 + 1) $(w/2)

=e"*y "p(w + 2m(2k + 1)) d(w/2)
k
= 2 §(w+ 2m) + Blw — 2m) | B(w/2)

upports of 2d and 3d factors do not overlap for other values of k; note

[s
& = & since & is real]
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i
| L ! |

Tms b —dws 2T
fig 37: ¢(w + 27) + ¢(w — 27) and (w/2) (dashed)

-1/7 |
(2]

St -8B -2r 5. 2gp 2% 83 AT
fig 38: |p(w + 27) + d(w — 27) [H(w/2)

Thus have 2 distinct regions:

(a) For27/3 < w < 47/3 we see in diagram that
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e 2(w) = V2 [B(w+ 2m) + Blw — 2m)| B(w/2)
= ¢(w — 27)

1 3
= ——CO0S EV(—\w—27r| — 1)]
1/27‘( _2 27T
1 [ 3
——c0s| v ——(w—271) -1
o5 (a2 1)
o5 (ot
= ——COS|—V|—w+2
27‘( _2 27'('
1 Edl 3
= ——cos|=|l—v|l—|——w+2
(- (o))
-E-
2

So by symmetry same is true in —27/3 < w < — 47/3, so replace w by |w|
above to get:

o~ 1 .
e_w/Qw(w) — —— sin [EU<%|¢U‘ — 1)] for 27/3 <|w| <4n/3

Vor 12

(b) For 4n/3<w<8xr/3, we see from diagram (note
21 /3 < w/2 < 47/3):

(W) = V2m [$(w + 2m) + Blw — 2m)| B(w/2)
— 3(w/2)

1 Ks 3
= — — —w/2—1
\/27TCOS_2V<27Tw/ )]
= ——COS|—v| —w-—1
‘/27'(' _2 47T
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Again by symmetry same is true in —87/3 < w < — 47/3, so replace w by
jw:

e (w) = Ccos lzv<%|w\ — 1)] for 4n/3 < |w| < 87/3

5
3

Thus:

e/%sin [Zv(L|w| — 1], if 27/3 <|w| <4rm/3

~ 1
P(w) = —=1 e“/%cos [Zv( Z|w| - 1)], if 47/3 < |w| < 87/3
om 0 otherwise
-1/2
(2m]
At -8wB-2r 5. g 2% 8w AT

Fig. 39: The wavelet Fourier transform |¢(w)|

deyee phifky of ocdee O

5 10

Fig. 40: The Meyer wavelet ¢(x)

3. Properties of the Meyer wavelet
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Note: If v is chosen as above and has all derivatives 0 at /2, can check
that (w) is:

e infinitely differentiable (since it is a composition of infinitely
differentiable functions), and one can check that all derivatives are 0 from
both sides at the break. For example, the derivatives coming in from the left
atw = ¥ are:

d’ ~
_ _ 0
|,
and similarly
v ~
=0
)|,

(proof in exercises).
e supported (non-zero) on a finite interval
Lemma:

(a) If a function ¢(x) has n derivatives which are integrable, then the
Fourier transform satisfies

[P(w)] < K(1+|w])™

Conversely, if holds, then v (x) has at least n — 2 derivatives.

(b) Equivalently, if ¥(w) has n integrable derivatives, then

(@) < K(1+ |f)™"
Conversely, if holds, then %(w) has at least n — 2 derivatives.
Proof: in exercises.

Thus: ¢ (z)

e Decays at oo faster than any inverse power of x
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e Is infinitely differentiable

Claim:
pir(x) =2 (2w — k)

form an orthonormal basis for L?(R).

e Check (only to verify above results - we already know this to be true from
our theory):

[ @i = [ -1

o —0o0

o 1 s 3
2 _ in2|Z - -1
/—wl¢(w>| W= o (/?.;<|w|<4;dw o IZV(ZWM >]
3
+/ dw cos’ Fu(—M — 1)]
Flwl<T 2 \dm

[getting rid of the | - | and doubling; changing vars. in second integral]

3
+2/ dweos? | 2o 2w —1
2t 2 \ 27
/ dw {sin2 Fu(iw — 1)] + 2 cos? Fu(iw — 1)] }
1 3
= — / dw{l—FCOSQ[EV(—w—l)]}
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[lettings = 2w —1 = w=27/3(s+1)]

= %(/Olds(l + cos’ [gu(s)D>
= g (/01/20!3 (1 + cos? [gu(s)D + /1/12ds (1 + cos? [gu(s)]))>
) ; </01/2d8 (1 © cos? [g”(S)D ) /01/2d8 (1 + cos? [gy(s + 1/2)}))

[usingrv(s+1/2) =1—-v(1/2 —s)]

) ; (/01/2d5 (1 + cos? {g’/(s)b . /01/2d8 (1 + cos® [g(l —v(1/2 - S))D)

_ % (/01/2(13(1 4+ cos? [gV(S)]> N /01/2d8<1 + sin? [gy(l/Q — S)} ))
s=1/2=s ; (/Ost (1 + cos? [gl/(s)b + /01/2d3 (1 + sin? [;TV(S)D>

e To show in another way that they form an orthonormal basis, sufficient to
show that for arbitrary f € L*(R),

Sl HE = [ 1f@)f do
Dk -
[this is a basic analytic theorem].
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Now note:

> s £ = 3| [ de bt fla)do
J:k Jk
=3 | [ T

Note if

V() = 27/2 ¢(2ja: — k).
Then as usual:

Do) = 2797 P2 e ke,

Plug this in above and can do calculation to show (we won't do the
calculation):

i|<fv¢jk>|2 = /_OO dz|f (),

oo

as desired.

CONCLUSION:
The wavelets

Yip(z) = 2J/2 V(2z — k)

form an orthonormal basis for the square integrable functions on the real
line.

4. Daubechies wavelets:

Recall that one way we have defined wavelets is by starting with the scaling
(pixel) function ¢(x). Recall it satisfies:

-~

b(w) = mo(w/2)$ (w/2)
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for all w, where mg(w) is some periodic function. If we use my as the
starting point, recall we can write

- 1 3 .
o(w) = —=][mo(w/2).
V2T
Recall m, is periodic, and so has Fourier series:

mo(w) = Z ay e

k

If mo satisfies |mg(w)|?> + |mo(w+ 7)|> =1, then it is a candidate for
construction of wavelets and scaling functions.

For Haar wavelets, recall mq(w) = ¢*/? cos w/2, so we could plug into
to get ¢, and then use previous formulas to get wavelet ().

If we start with a function mg(w), when does lead to a genuine
wavelet? Check conditions:

1)
\/Tﬁ CLJ/2‘]
=1

1

= \/%mo(w/Q)gmo(W/Qj)

mo(w/2)—— 1 o(w/2/th)
Vit

= my(w/2)$(w/2)

Recall this implies that V; C V1 where
|ak\2 < OO}
k

= { Z ar @i ()
(usual definition) with ¢ 5 (z) = 27/2¢(27x — k)

k=—o0

79



(2) The second condition we need to check is that translates of ¢
orthonormal, i.e.,

Zk]a(w o) = 2i

™

If

N
my(w) = finite Fourier series = ) ~ are™** = trigonometric polynomial
k=—N

there is a simple condition which guarantees condition (2) holds.

Theorem (Cohen, 1990): If the trigonometric polynomial m, satisfies
my(0) =1 and

[mo (W) + Jmo(w + ) =1

(our standard condition on m,), and also mg(w) # 0 for |w| < 7/3, then
condition (2) above is satisfied by

~ - ;
¢(w) = \/—2—7Hm0(w/2 )

Proof: Daubechies, Chapter 6.

Since condition (1) is also automatically satisfied, this means ¢ is a scaling
function which will lead to a full orthonormal basis using our algorithm for
constructing wavelets.

Another choice of my Is:

mo(w) = S[1+V3) + B+ VB)e ™ + 3= VB)e ¥ 4 (1 - v/B) ]

(Fourier series with finite number of terms).
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15

0.5}

0.5

A

15
Fig 41: Real (symmetric) and imaginary (antisymmetric) parts of mg(w)

To check Cohen's theorem satisfied:
(i) Equation satisfied (see exercises).

(i) 1f mo(w) = Remo(w) + ¢ Immy(w),
Imo(w)|? = |Re mg(w)|* + [Immg(w)]* # 0
for |w| < 7/3, as can be seen from graph above.
So: conditions of Cohen's theorem are satisfied.
In this case if we define scaling function ¢ by computing infinite product

(perhaps numerically), and then use our standard procedure to construct
wavelet ¢)(x), we get:

81



fig 42: pictures of ¢ and v

Note meaning of m: In terms of the original wavelet, this states

d(z) = L [(1+/3)o(22) + (3 + /3)6(2z — 1)
+(3—/3)p(2x —2) + (1 — /3)p(2z — 3)]

(see above). Note this equation gives the information we need on ¢,
since it determines mg(w).
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6. Examples, applications

1. Other examples
Note again it is possible to get other wavelets this way: If we demand

o) = .226 ¢(2x) + .854 p(2x — 1) 4+ 1.24 p(2z — 2)
+.196 ¢(22 — 3) — 1.434 (22 — 4) — .046 ¢(2z — 5)
+.110 (22 — 6) — .008 ¢(2z — 7) — .018 ¢(2z — 8)
+.004 ¢(2x — 9)
Then this results with an m(w)

mo(w) = .113 4 .427 €™ + 512 e* 4 .098¢™ + ... +.002e"™.

4t

IV
/

4t

Fig 43: Real (symmetric) and imaginary parts of my; note condition (ii) of
Cohen's theorem is satisfied.

Can check it satisfies condition (ii) of Cohen's theorem and resulting ¢ is
obtained:

o0

o(w) = [ [mo(w/2)).

J=1
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It satisfies required properties (a) - (f) of a multiresolution analysis.
Corresponding scaling function s¢(x) and wavelet sv)(x) are below

1.0 50

4 2 0 2 4

Fig 44: Scaling function and wavelet for the above ¢ choice

NOTE: Can show that if there is a finite number of terms on the right side
of , then corresponding wavelet and scaling function are compactly
supported.

2. Numerical uses of wavelets
Note that once we have an orthonormal wavelet basis {v ;. }, can write

any function:

f(z) = Z ajk Yk (),
ik

with a;; = (f,v¥;:). Numerically, can find aj; = (¢ji, f) using numerical
integration to evaluate inner product.

With Daubechies and other wavelets, there are no closed form for the
wavelets, so above integrations must be performed on the computer.
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But there are very efficient methods of doing this: in order to get all the
wavelets 1, into the computer, we just need to input one - all others are
rescalings and translations of the original one.

There are efficient algorithms to get coefficients aj.; more details in
Daubechies' book.
3. SOME GENERAL PROPERTIES OF ORTHONORMAL

WAVELET BASES:

Theorem: If the basic wavelet (z) has exponential decay, then
cannot be infinitely differentiable.

(in particular, if ¢ has compact support, then ¢ cannot be infinitely
differentiable).

Proof: Daubechies, Chapter 5.

Compactly Supported Wavelets:

So far we are able to get wavelets
V(@) = 27 (20 — k)

which form an orthonormal basis for 2. Note Haar wavelets had compact
support. When will wavelets be compactly supported in general?

Recall we assume that given basic scale space V;, that we have scaling
(pixel) function ¢ such that {¢(xz — &)}, form basis for V4.

Recall

. Vo C Vi,

e d@eW = 9@ e

© V20Q0)eW

. {V/2 ¢(2x — k)}32, form abasis for V;
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Recall since ¢(x) € V7, we have for some choice of hy:
o) =D hi V2 p(2x — k).
0

Constants h;, relate the space 1V, to V.
We will see that:

Theorem:

finitely many hy 20 < 1, ¢ have compact support.

Proof:

< Assume ¢ has compact support. Then note since \/§¢(2x — /)
are orthonormal,

e = / V26(2x — 0)¢(x)da

= (0 for all but a finite number of 7 :

M N
~ v

fig 45 : Note h; = integral of product = 0 for all but finite number of ¢

To prove =-: (rough sketch only)

Assume that h;, are 0 for all but a finite number of k. Then need to show
¢(x) has compact support.

Strategy of proof: look at ¢(w).

Recall we defined
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Recall:
~ 1 S5 iy
¢(w)—ﬁ£[1mo(2 w).

e From this show that $(w) extends to an analytic function of w in whole
complex plane satisfying:

[B(W)] < C(1+ [w)M Nime
for constants M and N.

e This implies by Paley-Wiener type theorems that ¢(z) = F~! () is
compactly supported. [

4. GENERIC PRESCRIPTION FOR COMPACTLY SUPPORTED
WAVELETS:

e Start with finite sequence of numbers h;. (define how V; will be related
to V1)

e Construct
hk _‘k
mo(w) = — e "
25

check that it satisfies Cohen's theorem conditions :
|mo(w)| # 0 for |w| < 7/3.
and

[mo(W)[* + [mo(w + m)|* = 1.

e Construct

87



1 = . -~
——=][m(27w) = g(w)
2T j=1
e Construct Fourier transform of wavelet by:
Y(w) = e mo(w/2+ 7) d(w/2),

e Take inverse Fourier transform to get ¢)(z) = wavelet

5. SOME FURTHER PROPERTIES OF WAVELET EXPANSIONS

QUESTION: Do wavelet expansions actually converge to the function
being expanded at individual points z?

Assume that scaling function ¢ is bounded by an integrable decreasing
function. Then:

Theorem: If f is a square integrable function, then the wavelet expansion
of f

o) =S aile)
ik

J

converges to the function f almost everywhere (i.e., except on a set of
measure 0).

QUESTION: How fast do wavelet expansions converge to the function f?

ANSWER: That depends on how “regular” the wavelet ) is. More
particularly it depends exactly on the Fourier transform of :

Theorem: In d dimensions, the wavelet expansion
f@) =" ap ()
7,k

converges to a smooth f in such a way that the partial sum
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> apti(@)

JSNk

differs from f(x) at each = by at most C - 2=+, iff

/ ()2 ]2 dw < co.

6. CONTINUOUS WAVELET TRANSFORMS

Consider a function v(x) € L? (i.e., ¢ is square integrable), such that v(x)
decays fast enough at oo (faster than 1/z2), and such that

/: W(x)dz = 0.

Then we can define an integral wavelet expansion (integrals instead of sums)
using re-scalings of v (x):

Define rescaled functions

Yap(x) = |a]'? ¢(a(z - b)).
[note @ — 1/a in definition of Daubechies]
Here a,b € R. Thus a measures how much 1t has been stretched (dilation

parameter), and b measures how much 1 has been moved to the right
(translation parameter).

New point: dilation parameter a and translation parameter b can take on any
real value.

Now define wavelet expansions in this case (analogous to Fourier transform

-- called wavelet transform): given f € L* (R), we define the transform
(assuming that ) is real)
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(W) (ab) = / dz f(z) [a[P2(a(z — b))

— [ do (@) @)
= (s f)
How to recover f from (W f)(a,b)?
Claim:
fy=c [ [ dadb (W)(ab) vust
where

Ccl= —27r/dw|w\_1|@(w)|2.
Pf. of claim (sketch; details in Daubechies, Ch. 2):

We will show that for any g¢(x) € L2,
(9(), 1)) = (9().C [ [ dadb (W $)(a,b) bus(s)

To see this, note that

(9(e). 1(0)) = [ " @) fl@) de

- [ 457w

8

[use “Plancherel Theorem” for wavelet transforms]

e / / da.db (W) (@, 0)(W f)(a, b)
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e / / da db (g(x), s (@) (W £)(a,b)(x)

_ <g<x>,o [ [ das <Wf><a,b>wa,b<x>>,

as desired, completing the proof.

Thus we know how to recover f(x) from W f(a,b) (analogous to
recovering f(z) from f(w) in Fourier transform).

QUESTION: What sorts of functions are (W f)(a,b)? For some choices of
1, these are spaces of analytic functions.

7. Convolutions:

Definition: The convolution of two functions f(x) and g(x) is defined to be

f(x)*g(x) = /_Oof(:c —y)g(y)dy.

Theorem 2: The convolution is commutative: fxg = gxf
Proof: Exercise.

Theorem 3: The Fourier transform of a convolution is a product.
Specifically,
F(f(z)xg(x)) = V2 f (w)5(w)
Proof: Exercise.

A~

Lemma 4: For any function f, F(f(—z)) = f(w)
Proof: Exercise.

8. APPLICATION OF INTEGRAL WAVELET TRANSFORM:
IMAGE RECONSTRUCTION (S. Mallat)
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Dyadic wavelet transform: a variation on continuous wavelet transform.

Now define new dilation only by powers of 2; arbitrary translations:
bjp(x) = 279(2/ (z — b))
Define
Vi(z) = 27 (2x).

(Still allow b € R to take all values, but restrict a = 27.)

Define this dyadic (partially discrete) wavelet transform by:
WG = [ £ vpala

I.e., usual set of wavelet coefficients, except that b is continuous.

Note:

- /da:f(a:) 2/1p(2/(z — b))

— [ do (@) iyt~ )

= (f*1)(b)
(a convolution) where as above
V;(x) = 2/¢p(27x) = shrinking of ) by a factor 2/.

New assumption: Fourier transform f/)(w) satisfies

o0

~ 2_i
S 1w = o

j=—o00
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Now: given f(z), consider dyadic wavelet transform; a = 27 only:

Can show under our assumptions that can recover f in this case too:
Recovery formula for f is:

0.¢]

fl@) =" (W) x)s;(—x)

p—

(convolution in variable z). It is easy to check that this is correct: if F
denotes Fourier transform:

f( i W 1), 33)*%(-@) = f( i f(x)*wj(ﬂf)*%(—ﬂf))

j=—o j=—00

_ Jiﬂ F(@)say(x) sy (—))
_ zﬂj-ffm?(w 35(w) ()
_ 27220 F(w) $(27w) $(2-Iw)
_ 275_2?(”)‘“2_] WP
) %J_i@(rf W)

— 7).

QUESTION: Given f(x), what sort of function is the wavelet transform
(W £)(4,b), as a function of 5 and b?
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Let V = the collection of possible functions (W f)(j,b) = collection of
possible wavelet transforms. When is an arbitrary function ¢(j,b) a wavelet
transform?

Can check that ¢ must satisfy a so-called reproducing kernel equation:
g(j,b) is the wavelet transform of some function iff

9.0 = (KQ)Gb) = 3 ()il — b)rg(£,b)

f=—00

[this equation defines K g; note convolutionisin b.]
Back to recovering f from wavelet transform:

Thus we can recover f as a sum of f at different scales:
f=Y WGz — z).
Jj=—00

Since 1 is a known function, we can recover f from the sequence of
functions. Assume a(x) is a cubic B-spline:

Fig. 46: A cubic B-spline a(x) is a symmetric compactly supported piecewise cubic
polynomial function whose transition points are twice continuously differentiable
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Now let the wavelet be its first derivative: i(z) = Fa(x)

N\

Fig 47: o (x) = La(x) is the wavelet

T

Using the wavelet () :

(W) =2,2)
(WFH)(—1,2)
(W0, )
(WF)(A,z)
(WF)(2,2)
(WF)(3,z)
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A Al o ﬁ" — w et
Wit-1,x) A [AAM v v narrower wavelet

ij(_l X) A T S L\rv Lt

NP AN _AV — wider wavelet
W(-%x) VA /\\_/

Wfi-ha) = —

=g fix) _— e —————— & =remainder =
sum of all
" larger scales

° ET) 100 150 200 230

Mazima of
Y T WL )

S¢fx)

o 30 100 150 200 250

So: one can recover f from knowing the functions
(WF)(G, ).

This is a lot of functions. What advantage of storing f in such a large
number of functions? We can compress the data.

CONJECTURE: We can recover f not from knowing all of the functions
W (4, ), but just from knowing their maxima and minima.

Meyer has proved this conjecture false strictly speaking certain choices of )
(including the above derivative v(x) of the cubic spline). It has been proved
true for another choice, the derivative of a Gaussian.

W) = e

—%e

However, for either choice of ¢) numerically it is possible to recover f(x)
from knowing only the maxima and minima of the functions W (j, z).

Numerical method:
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Assume that we are given only the maxima and minima points of the
function W (4, x) for each j. How to recover f?

Given f, first take its wavelet transform; get W (4, «). Define

[' = set of all functions g¢(j,z) which have the same set of maxima and
minima (in x) as W (j, z) for each j.

V = setofall g(j,x) which are wavelet transforms of some function of z.

Idea is: the true wavelet transform W f(j, z) of our given function f(z) is
in " (i.e. has the same maxima as itself) and is in V' (i.e., in the collection
of functions which are wavelet transforms).

Thus
WfelnV.

intuitive picture:

I = allfunctions with same
maxirna as Wi x)

1Y = desired point

?V = all functions which are wavelet
transforms

fig 48
Thus if we know just the maxima of W f(j, x), we can try to find W f(j, x)
That is:

1. We know maxima of W f(j, x), so
2. know T" = all functions with same maximaas W f(j, x)
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3. Find W f(j,x) as “unique” point in " which is also a wavelet transform,
I.e., unique pointin I'N V:
Algorithm:

1. Start with only the maxima information about W (j,z). Call M the
maxima information.

2. Make initial guess using function g, (j, ) which has the same maxima as
W(j,z).

3. Find closest function in V' = set of wavelet transforms to ¢;(j,z). Call
this function g»(j, z).

4. Find closest function in T" = functions with same maxima as M to
92(j, z). Call this function g5(j, x).

5. Find closest function in V' to g3(j, x); call this g4(j, x).

6. Find closest function in I" to g4; call this g5.

7. Continue this way: at each stage j find the closest function g; to g;_;
in

the space V orI' (alternatingly).

Eventually the ¢;(j,z) .— W f(j,x) asdesired.
J—

98



I = allfunctions with same
ExirE as W, x)

[ M = desired point

. o
76.2) f[\-ﬂ‘ = all functions which are wavelet
transforms

CONCLUSION: We can recover the wavelet transform W f(j,z) of a
function just by knowing its maxima in .

THE POINT: Compression. We can store the maxima of W f using a lot
less memory.

APPLICATION: Compression of images:

Fig. %: The upper left is the original lady image. The upper right image is a reconstruction from
the mazima representanion shown in the second column of g, 8. This reconsrruciion s ~ormed
with & iserations and the noise to signal ratio is 6.6 107 The lower lefi and lower right images
have been reconsrructed from the maxima represenianion sthown respectively in e third an.
Jourth column of fig. & (thresholding by the factors 4 and 8. The light textures have disappeared
but the strong edges and rextures remain unchanged.

Fig. 49
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B\ /| JI iib ‘\a//
m;.a m_ﬂmmsﬁ-wmw Myf(sy) for 15j%4 of the iady image
shown at the top left of fig. 9. The second column displays che position of the mazim:-
Maif (.5). The third and fourth columns display the position of the local mazima whose ampli-
rude are respectively larger than 4 and 8. The maxima that have been removed corresmond etsen-
tially to the noise and the lighs rexture irregularities,

Fig. 50

9. Wavelets and Wavelet Transforms in Two Dimensions

Multiresolution analysis and wavelets can be generalized to higher
dimensions. Usual choice for a two-dimensional scaling function or wavelet
Is a product of two one-dimensional functions. For example,

P2(7,y) = ¢(2)9(y)

and scaling equation has form

Sz, y) =D hi - 262z — k, 2y — ).

kel

Since ¢(x) and ¢(y) both satisfy the sclaing equation

= th V2020 — k
2

we have hy; = hih;. Thus two dimensional scaling equation is product of
two one dimensional scaling equations.
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We can proceed analogously to construct wavelets using products of
one-dimensional functions. However, unlike one-dimensional case, we have
three rather than one basic wavelet. They are:

v (z,y) = ¢(2)¥(y)
YU (z,y) = (z)d(y)

WU (m,y) = v()b(y).

The generalization of the one-dimensional wavelet equation leads to
the following relations:

k1

I (z,y) =S gUD 2620 — k, 2y — 1)
Tl
YU () =S g 2620 — k, 2y — 1)

k)l

I II IT
where 921) = hrgi, gl(gz ) = grh;, and gél ) = 9r9gi-

We can generate two-dimensional scaling functions and wavelets using the
functions ScalingFunction and Wavelet then taking the product. For
example, here we plot the Haar wavelets in two dimensions. Various
translated and dilated versions of the wavelets can be plotted similarly.
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Fig. 52: Haar wavelet /'Y (z, y)
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Fig. 54: Third wavelet o'/ (z, )

As example of another wavelet, here is so-called "least asymmetric wavelet"
of order 8 in two dimensions :
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Fig. 55: Least asymmetric wavelet of order 8
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