MAP METHODS FOR MACHINE LEARNING

Mark A. Kon, Boston University Leszek Plaskota, Warsaw University, Warsaw Andrzej Przybyszewski, McGill University

Example: Control System

1. Paradigm: Machine learning of an unknown input-output function

Example: Control system

Seeking relationship between inputs and outputs in industrial chemical mixture

Example: Control System

Given: We control chemical mixture parameters, e.g.:

- temperature $= x_1$
- ambient humidity = x_2 , along with other non-chemical parameters x_3 , x_4 , x_5
- proportions of various chemical components $= x_6, \ldots, x_{20}$

Goal: Control output variable y = ratio of strength to brittleness of resulting plastic

We want machine which predicts y from $\mathbf{x} = (x_1, \dots, x_{20})$ based on data from finite number of experimental runs of equipment.

 \Rightarrow want "best" f so

$$y = f(x_1, \dots, x_{20}) + \epsilon = f(\mathbf{x}) + \epsilon$$

with minimal error ϵ .

2. Solution: MAPN (MAP for Nonparametric machine learning)

Maximum A Posteriori (MAP) methods common for parametric statistical problems (see below).

MAPN (MAP for Nonparametric machine learning) extends these methods to Nonparametric problems.

- Method simple, intuitively appealing (even in high dimension)
- Incorporation of prior knowledge explicit and transparent
- Results of method often coincide with standard methods, e.g., statistical learning theory (SLT), information-based complexity (IBC), etc..

Bayesian machine learning strategy:

Use prior knowledge about f to choose reasonable probability distribution dP(f) on set F of possible f.

Then combine prior knowledge with

experimental data.

Model:

Experimental data y_i satisfy

$$y_i = f(\mathbf{X}_i) + \epsilon_i$$
,

with ϵ_i = Gaussian random error.

Equivalently,

$$\mathbf{y} = N(f) + \boldsymbol{\epsilon},$$

where

$$\mathbf{y} = (y_1, \ldots, y_n)$$

 $N(f) = \text{information vector } = (f(\mathbf{x}_1), \dots, f(\mathbf{x}_n)).$

Standard strategy:

Compute conditional expectation

$$E(f|Nf = \mathbf{y}) \tag{*}$$

as best guess of f.

Difficulties of the strategy:

- \bullet we have "infinite dimensional" parameter space F
- difficult to determine "reasonable" a priori probability measure P
- expectation (*) above hard to compute.

Sidebar: Parametric Statistics

3. Sidebar: maximum a Posteriori (MAP) solutions yield a useful strategy in parametric statistics (finite dimension):

Finite dimensional method involves writing probability measure P for unknown parameter **z** as

$$dP(\mathbf{Z}) = \rho(\mathbf{Z}) \, d\mathbf{Z},$$

where dz = "uniform distribution" on z, and

$$\frac{dP(\mathbf{Z})}{d\mathbf{Z}} = \rho(\mathbf{Z})$$

is density function of **z**.

MAP procedure finds

 $\widehat{\mathbf{z}} = \text{maximizer of } \rho(\mathbf{z})$

(analogously to maximum likelihood estimation) as best estimate.

MAP Example: OCR

Example of MAP (discrete case):

Decide which letter ℓ_0 (a letter of the alphabet) we are looking at in an OCR program.

A priori information: overall probability distribution $P(\ell)$ on 26 letters ℓ in alphabet.

MAP Example: OCR

Data: Vector $\mathbf{z} = (z_1, \dots, z_8)$ of 8 features of viewed letter.

Assume true letter is $\ell_0 = G$

$$\hat{\ell}_0 = \mathsf{MAP} \text{ estimate of true letter } \ell_0 = \arg \max_{\ell} P(\ell | \mathbf{z}),$$

where ℓ ranges over alphabet. Here $P(\ell | \mathbf{z})$ is computed using Bayes' formula:

$$P(\ell | \mathbf{z}) = \frac{P(\mathbf{z} | \ell) P(\ell)}{\sum_{j} P(\mathbf{z} | j) P(j)} = CP(\mathbf{z} | \ell) P(\ell)$$

(C = denominator term is independent of ℓ).

Note $P(\mathbf{z}|\ell)$ is known, since we know which features occur in which letters.

MAP Example: OCR

Thus

$$\widehat{\ell} = \underset{\ell}{\arg\min} P(\mathbf{z}|\ell) P(\ell)$$

Extending MAP: Nonparametric case

4. Extending MAP to non-parameteric statistics:

Can we use MAP to discover an entire function $f(\mathbf{x})$?

Recall: input data points are \mathbf{x}_i , output are y_i , model is

$$y_i = f(\mathbf{x}_i) + \epsilon_i = (Nf)_i.$$

Strategy:

Goal: Solve for unknown dependence $y = f(\mathbf{x})$ using above model $\mathbf{y} = Nf + \boldsymbol{\epsilon}$.

Prior knowledge: reflected in probability distribution dP(f) on space F = possible choices of f.

Extending MAP: Nonparametric case

Density function: Define a density function $\rho(f)$ for the distribution dP(f), i.e., so that

$$dP(f) = \rho(f)df.$$

Algorithm: maximize $\rho(f|\mathbf{y})$, i.e., density conditioned on data $\mathbf{y} = Nf$.

Problem: There is no "uniform distribution" df on a function space such as F.

Remark: finding $\rho(f)$ is difficult part here - probability density in function space not easy to define!

Solution: MAPN theorem (below)

Extending MAP: Nonparametric case

Remark: The function $\rho(f)$ plays the role of a likelihood function in statistics -

- the larger $\rho(f)$ the more "likely" f is
- intuitively appealing
- easily interpretable
- very easily modifiable as prior information or intuition warrants
- nevertheless, $\rho(f)$ always corresponds to a genuine probability distribution dP(f) on functions.

5. Details of the algorithm:

Note we have

$$\mathbf{y} = Nf + \boldsymbol{\epsilon} \implies \boldsymbol{\epsilon} = \mathbf{y} - Nf.$$

MAPN estimate is (using continuous Bayes formula)

$$\arg\max_{f} \rho(f|\mathbf{y}) = \arg\max_{f} \frac{\rho_{\mathbf{y}}(\mathbf{y}|f)\rho(f)}{\rho_{\mathbf{y}}(\mathbf{y})} = C_1 \rho_{\mathbf{y}}(\mathbf{y}|f)\rho(f).$$

(here $C_1 = \frac{1}{\rho_y(\mathbf{y})}$ is independent of f).

Choose prior distribution dP(f) for f to be Gaussian with covariance operator $C = (A^*A)^{-1}$, with A given below.

To define A: let

$$\mathbf{a} = (a_1, \dots, a_{20}) = (.1, \dots, .1, .2, \dots, .2)$$

be a vector which determines strength of a priori information for each component x_i .

Here **a** has

```
first 5 components = .1
```

```
last 15 components = .2
```

reflects lower dependence of a priori assumptions on first 5 parameters (i.e., temperature, humidity, other non-chemical parameters);

greater on the last 15 (chemical parameters).

Choose covariance matrix of Gaussian to be the operator $C = (A^*A)^{-1}$, where

A = "regularization operator" $= d(\mathbf{x})(1 + \mathbf{aD})d(\mathbf{x}),$

with

$$\mathbf{a}\mathbf{D} = \sum_{i=1}^{20} a_i rac{\partial^{30}}{\partial x_i^{30}}.$$

Here $d(\mathbf{x})$ reflects density of sample points on \mathbb{R}^{20} via $d(\mathbf{x}) = (1 + \delta(\mathbf{x}))^{-1},$

where

 $\delta(\mathbf{x}) = \text{smoothed density of sample points}$

$$=\left(1+\sum_{k=1}^{n}e^{-(\mathbf{x}-\mathbf{x}_{k})}\right)^{1/20}$$

Note: order 30 above reflects smoothness level we expect of solution function f; note in 20 dimensions we need at least 10 derivatives for f to be continuous.

Thus distribution P concentrated on smooth solutions f; minimizing solution given by radial basis functions (see below)

Then MAPN theorem (below) shows probability distribution dP(f) has density function $\rho(f) = C_2 e^{-\frac{1}{2}||Af||^2}$.

If we assume error vector $\boldsymbol{\epsilon} = (\epsilon_1, \dots, \epsilon_n)$ is Gaussian:

$$\rho_{\boldsymbol{\epsilon}}(\boldsymbol{\epsilon}) = C_3 e^{-\|B\boldsymbol{\epsilon}\|^2} = C_3 e^{-\|B(Nf-\mathbf{y})\|^2}.$$

(with $B = n \times n$ covariance matrix), then:

$$\rho(f|\mathbf{y}) = \frac{\rho_{\mathbf{y}}(\mathbf{y}|f)\rho(f)}{\rho_{\mathbf{y}}(\mathbf{y})} = C_3 \frac{e^{-\|B(N(f)-\mathbf{y})\|^2}e^{-\|Af\|^2}}{\rho_y(y)}$$
$$= C_4 e^{-\|B(Nf-\mathbf{y})\|^2}e^{-\|Af\|^2}$$
$$= C_4 e^{-(\|Af\|^2 + \|B(Nf-\mathbf{y})\|^2)}.$$

Thus maximizer of $\rho(f|\mathbf{y})$ is

$$\hat{f} = \arg\min_{f} \|Af\|^2 + \|B(Nf - y)\|^2$$
(*)

$$=\sum_{k=1}^{n} c_k G(\mathbf{x}, \mathbf{x}_k) \tag{**}$$

where

 $G(\mathbf{x}, \mathbf{x'}) = \text{radial basis function} = \text{Green's function for operator } A$

$$= \mathcal{F}\left(\left(1 - \sum_{i=1}^{20} a_i^2 (i\xi_i)^{30}\right)^{-1}\right) (\mathbf{x} - \mathbf{x}'),$$

where ξ_i = Fourier variable dual to x_i .

Note: (*) is same functional appearing in regularization solutions in SLT, and the solution (**) is the same as spline solution in IBC.

Solution of problem:

Choose \widehat{f} as in (**) for best approximation of i-o relationship $y = f(\mathbf{x})$

How does it work?

6. How does it work?

How do we define density $\rho(f)$ corresponding to prior probability distribution dP(f) on the set of all functions?

Analogously to standard parametric MAP methods.

Use a definition of probability density $\rho(f)$ corresponding to probability distribution dP(f) which works for both parametric (finite dimensional) and nonparametric (function) spaces.

Define $\rho(f)$ to be proportional to the ratio $\frac{P(B_r(f))}{P(B_r(0))}$ of probabilities of balls of radius r near f and 0, in the small r limit.

How does it work?

This limit exists for most generic measures in infinite dimension, including Gaussian measures:

How does it work?

MAPN Theorem: (a) The limit $\rho(f) = \lim_{r \to 0} \frac{P(B_r(f))}{P(B_r(0))}$ exists for a

Gaussian measure P on a function space F with covariance operator C, defining its density function.

(b) If $C = (A^*A)^{-1}$ as above

$$\rho(f) = K e^{-\frac{1}{2} \|Af\|^2}$$

In finite dimensions this reduces to ordinary density function of the Gaussian distribution.

http://math.bu.edu/people/mkon

Thank you!