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Example:  Control System

1.  Paradigm:  Machine learning of an unknown input-output
function

Example:  Control system

Seeking relationship between inputs and outputs in industrial
chemical mixture



Example:  Control System

Given:  We control chemical mixture parameters, e.g.:

  temperatureì œ B"

  ambient humidity , along with other non-chemicalì œ B#

   parameters B ß B ß B$ % &

  proportions of various chemical componentsì œ B ßá ß B6 #!

Goal:  Control output variable  = ratio of strength to brittleness ofC
resulting plastic

We want machine which predicts  from  based onC œ ÐB ßá ß B Ñx " 20
data from finite number of experimental runs of equipment.

Ê 0 want "best"  so

C 0ÐB ßá ß B Ñ  œ 0Ð Ñ œ " #! % %x

with minimal error %Þ



MAPN approach

2.  Solution:  MAPN (MAP for Nonparametric machine learning)

Maximum A Posteriori (MAP) methods common for parametric
statistical problems (see below).

MAPN (MAP for Nonparametric machine learning) extends these
methods to Nonparametric problems.

ì   Method simple, intuitively appealing (even in high dimension)
ì Incorporation of prior knowledge explicit and transparent
ì   Results of method often coincide with standard methods, e.g.,
  statistical  learning theory (SLT), information-based
  complexity (IBC), etc..



MAPN approach

Bayesian machine learning strategy:

Use prior knowledge about  to choose reasonable probability0
distribution  on set  of possible ..T Ð0Ñ J 0

  Then combine prior knowledge with
experimental data.



MAPN approach

Model:

Experimental data  satisfyC3

C œ 0Ð Ñ 3 3 3x % ,

with Gaussian random error.%3 œ

Equivalently,

y œ RÐ0Ñ  %ß

where

y œ ÐC ßá ß C Ñ" 8

RÐ0Ñ œ œ Ð0Ð Ñßá ß 0Ð ÑÑÞinformation vector x x" 8



MAPN approach

Standard strategy:

Compute conditional expectation

IÐ0lR0 œ Ñy (*)

as best guess of .0

Difficulties of the strategy:      

ì we have "infinite dimensional" parameter space J

ì T difficult to determine "reasonable" a priori probability measure 

ì   expectation above hard to compute.(*) 



Sidebar:  Parametric Statistics

3.  Sidebar:  maximum a Posteriori (MAP) solutions yield a
useful strategy in parametric statistics (finite dimension):

Finite dimensional method involves writing probability measure T
for unknown parameter  asz

.T Ð Ñ œ Ð Ñ . ßz z z3

where "uniform distribution" on , and.z zœ

.T Ð Ñ

.
œ Ð Ñ

z
z z3

is density function of zÞ

MAP procedure finds

z zs œ Ð Ñmaximizer of 3

(analogously to maximum likelihood estimation) as best estimate.



MAP Example:  OCR

Example of MAP (discrete case):

Decide which letter  (a letter of the alphabet) we are looking at inj!
an OCR program.

                              

   

A priori information:  overall probability distribution  on 26TÐjÑ
letters  in alphabet.j



MAP Example:  OCR

Data:  Vector  of 8 features of viewed letterz œ ÐD ßá ß D Ñ Þ" )

Assume true letter is j œ K!

j œ j œ TÐjl Ñßs
! !

j

MAP estimate of true letter  arg max z

where  ranges over alphabet.  Here  is computed usingj T Ðjl Ñz
Bayes' formula:

TÐjl Ñ œ œ GTÐ ljÑT ÐjÑ
T Ð ljÑT ÐjÑ

T Ð l4ÑT Ð4Ñ
z zz

z!
4

( denominator term is independent of G œ jÑÞ
Note  is known, since we know which features occur in whichTÐ ljÑz
letters.



MAP Example:  OCR

Thus

j œ TÐ ljÑT ÐjÑs arg min
j

z



Extending MAP:  Nonparametric case

4.  Extending MAP to non-parameteric statistics:

Can we use MAP to discover an entire function ?0Ð Ñx

Recall: input data points are , output are , model isx3 3C

C œ 0Ð Ñ  œ ÐR0Ñ Þ3 3 3 3x %

Strategy:

Goal:  Solve for unknown dependence  using above modelC œ 0Ð Ñx
y .œ R0  %

Prior knowledge:   reflected in probability distribution  on.T Ð0Ñ
space possible choices of .J œ 0



Extending MAP:  Nonparametric case

Density function:  Define a density function  for the distribution3Ð0Ñ
.T Ð0Ñ, i.e., so that

.T Ð0Ñ œ Ð0Ñ.0 Þ3

Algorithm:  maximize , i.e., density conditioned on data3Ð0 l Ñy
y œ R0Þ

Problem:  There is no "uniform distribution"  on a function space.0
such as .J

Remark:  finding  is difficult part here - probability density in3Ð0Ñ
function space not easy to define!

Solution:   MAPN theorem (below)



Extending MAP:  Nonparametric case

Remark:  The function  plays the role of a likelihood function in3Ð0Ñ
statistics -

ì Ð0Ñ 0  the larger  the more "likely"  is3
ì   intuitively appealing
ì   easily interpretable
ì   very easily modifiable as prior information or intuition warrants
ì Ð0Ñ  nevertheless,  always corresponds to a genuine probability  3
  distribution  on functions..T Ð0Ñ



Algorithm:  details

5.  Details of the algorithm:

Note we have

y yœ R0  œ R0Þ% %Ê

MAPN estimate is (using continuous Bayes formula)

arg max arg max 
0 0

"3
3 3

3
Ð0 l Ñ œ œ G

Ð l0Ñ Ð0Ñ

Ð Ñ
y yy

y
y

y
y3 3Ð l0Ñ Ð0ÑÞ

(here  is independent of ).G œ 0"
"
Ð Ñ3y y

Choose prior distribution for  to be Gaussian with.T Ð0Ñ 0

covariance operator , with  given below.G œ E E Ea b‡ "



Algorithm:  details

To define : letE

a œ Ð+ ßá ß + Ñ œ ÐÞ"ßá ß Þ"ß Þ#ßá ß Þ#Ñ" #!

be a vector which determines strength of a priori information for
each component .B3

Here a has

first 5 components  œ Þ"

last 15 components œ Þ#

reflects lower dependence of a priori assumptions on first 5
parameters (i.e., temperature, humidity, other non-chemical
parameters)à

greater on the last 15 (chemical parameters).



Algorithm:  details

Choose covariance matrix of Gaussian to be the operator
G œ ÐE EÑ ß‡ " where

E œ œ .Ð ÑÐ"  Ñ.Ð Ñß"regularization operator" x aD x

with

aD œ + Þ
`

`B
"
3œ"

#!

3

$!

3
$!



Algorithm:  details

Here  reflects density of sample points on  via.Ð Ñx ‘#!

.Ð Ñ œ "  Ð Ñ ßx xa b$ "

where

$Ð Ñ œx smoothed density of sample points

œ "  / "
5œ"

8
Ð  Ñ

"Î#!

x x5 .

Note:  order 30 above reflects smoothness level we expect of
solution function ; note in 20 dimensions we need at least 100
derivatives for  to be continuous.0

Thus distribution concentrated on smooth solutions ; minimizingT 0
solution given by radial basis functions (see below)



Algorithm:  details

Then (below) shows probability distribution MAPN theorem .T Ð0Ñ

has density function 3Ð0Ñ œ G / Þ#
 mE0m"

#
#

If we assume error vector  is Gaussian:% œ Ð ßá ß Ñ% %" 8

3%
%Ð Ñ œ G / œ G / Þ% $ $

mF m mFÐR0 Ñm# #y

(with  covariance matrix), then:F œ 8 ‚ 8

3
3 3

3 3
Ð0 l Ñ œ œ G

Ð l0Ñ Ð0Ñ

Ð Ñ ÐCÑ

/ /y y
y

y

y

y
$

mFÐRÐ0Ñ Ñm mE0m

C

# #

œ G / /%
mFÐR0 Ñm mE0my # #

œ G / Þ%
 mE0m mFÐR0 m Ñˆ ‰# #y



Algorithm:  details

Thus maximizer of  is3Ð0 l Ñy

0 œ mE0m  mFÐR0  CÑm Ð‡Ñs arg min
0

# #

œ - KÐ ß Ñ Ð‡‡Ñ"
5œ"

8

5 5x x

where

KÐ ß œ œ Ex xw) radial basis function Green's function for operator 

œ "  + Ð3 Ñ Ð  ÑßY 0
Î Ñ
Ï Ò "

3œ"

#!

3
# $! w

3

"

x x

where Fourier variable dual to .03 3œ B



Algorithm:  details

Note:  (*) is same functional appearing in regularization solutions in
SLT, and the solution (**) is the same as spline solution in IBC.

Solution of problem:

Choose  as in (**) for best approximation of i-o relationship0s

C œ 0Ð Ñx



How does it work?

6.  How does it work?

How do we define density  corresponding to prior probability3Ð0Ñ
distribution  on the set of all functions?.T Ð0Ñ

Analogously to standard parametric MAP methods.

Use a definition of probability density  corresponding to3Ð0Ñ
probability distribution  which works for both parametric (finite.T Ð0Ñ
dimensional) and nonparametric (function) spaces.

Define  to be proportional to the ratio  of probabilities of3Ð0Ñ TÐF Ð0ÑÑ
T ÐF Ð!ÑÑ

<

<

balls of radius  near  and , in the small  limit.< 0 ! <



How does it work?

 

This limit exists for most generic measures in infinite dimension,
including Gaussian measures:



How does it work?

MAPN Theorem:  (a) The limit  exists for a3Ð0Ñ œ lim
<Ä!

TÐF Ð0ÑÑ
T ÐF Ð!ÑÑ

<

<

Gaussian measure  on a function space  with covarianceT J
operator , defining its density function.G

(b)  If ( )  as aboveG œ E E‡ "

3Ð0Ñ œ O/ mE0m"
#

#

In finite dimensions this reduces to ordinary density function of the
Gaussian distribution.

http://math.bu.edu/people/mkon

Thank you!


