MAP METHODS FOR MACHINE LEARNING

Mark A. Kon, Boston University
Leszek Plaskota, Warsaw University, Warsaw
Andrzej Przybyszewski, McGill University



Example: Control System

1. Paradigm: Machine learning of an unknown input-output
function

Example: Control system

Seeking relationship between inputs and outputs in industrial

chemical mixture
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Example: Control System
Given: We control chemical mixture parameters, e.g.:

e temperature = r;

e ambient humidity = x,, along with other non-chemical
parameters x3, x4, 5

e proportions of various chemical components = zg, ..., 9

Goal: Control output variable y = ratio of strength to brittleness of
resulting plastic

We want machine which predicts y from x = (x4, ..., x29) based on
data from finite number of experimental runs of equipment.

= want "best" f so
y=f($1,...,$20)—|—€:f(X)—|—€

with minimal error ¢.



MAPN approach

2. Solution: MAPN (MAP for Nonparametric machine learning)

Maximum A Posteriori (MAP) methods common for parametric
statistical problems (see below).

MAPN (MAP for Nonparametric machine learning) extends these
methods to Nonparametric problems.

e Method simple, intuitively appealing (even in high dimension)

e Incorporation of prior knowledge explicit and transparent

e Results of method often coincide with standard methods, e.g.,
statistical learning theory (SLT), information-based
complexity (IBC), etc..



MAPN approach
Bayesian machine learning strategy:

Use prior knowledge about f to choose reasonable probability
distribution d P(f) on set I’ of possible f.

F

Then combine prior knowledge with
experimental data.



MAPN approach

Model:

Experimental data y; satisfy

with ¢, = Gaussian random error.
Equivalently,

y=N(f)+e,
where

Y = (Y1;--Yn)

N(f) = information vector = (f(Xy),...



MAPN approach
Standard strategy:

Compute conditional expectation
E(fINf=Y) (%)

as best guess of f.

Difficulties of the strategy:
e we have "infinite dimensional" parameter space F
e difficult to determine "reasonable" a priori probability measure P

e expectation (*) above hard to compute.



Sidebar: Parametric Statistics

3. Sidebar: maximum a Posteriori (MAP) solutions yield a
useful strategy in parametric statistics (finite dimension):

Finite dimensional method involves writing probability measure P
for unknown parameter z as

dP(z) = p(2) dz,
where dz = "uniform distribution" on z, and

dP(z)
dz

= p(2)
Is density function of z.

MAP procedure finds
Z = maximizer of p(z)

(analogously to maximum likelihnood estimation) as best estimate.



MAP Example: OCR
Example of MAP (discrete case):

Decide which letter ¢, (a letter of the alphabet) we are looking at in
an OCR program.
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A priori information: overall probability distribution P(¢) on 26
letters ¢ in alphabet.



MAP Example: OCR

Data: Vectorz = (zq,..., zg) of 8 features of viewed letter.

Assume true letteris /5 = GG

"y = MAP estimate of true letter ¢, = arg max P(¢|z),
(

where ¢ ranges over alphabet. Here P(/|z) is computed using
Bayes' formula:

P(z|6)P({)

P(l|z) =
> P(z|7)P(j)

— CP(2|0)P(¢)

(C' = denominator term is independent of /).
Note P(z|{) is known, since we know which features occur in which
letters.



MAP Example: OCR

Thus

{ = argminP(z|¢)P(¢)
(



Extending MAP: Nonparametric case
4. Extending MAP to non-parameteric statistics:
Can we use MAP to discover an entire function f(x)?

Recall: input data points are x;, output are y;, model is
yi = f(Xi) + & = (NJf)i.

Strategy:

Goal: Solve for unknown dependence y = f(Xx) using above model
y=Nf+e.

Prior knowledge: reflected in probability distribution d P(f) on
space F' = possible choices of f.



Extending MAP: Nonparametric case

Density function: Define a density function p(f) for the distribution
dP(f), i.e., so that

dP(f) = p(f)df.
Algorithm: maximize p(f|y), i.e., density conditioned on data
y=NFf.

Problem: There is no "uniform distribution" d f on a function space
such as F.

Remark: finding p(f) is difficult part here - probability density in
function space not easy to define!

Solution: MAPN theorem (below)



Extending MAP: Nonparametric case

Remark: The function p(f) plays the role of a likelihood function in
statistics -

the larger p(f) the more "likely" f is

intuitively appealing

easily interpretable

very easily modifiable as prior information or intuition warrants

nevertheless, p(f) always corresponds to a genuine probability
distribution d P(f) on functions.



Algorithm: details
5. Details of the algorithm:

Note we have
y=Nf+e =>e=y—NFf.

MAPN estimate is (using continuous Bayes formula)

arg max p(f|y) — arg maXPY(y‘f)p(f)
/ f py(Y)

= Cipy(Y|f)p(f).

L 1 . .
(here ('] = ) S independent of f).

Choose prior distribution d P(f) for f to be Gaussian with
covariance operator C' = (A*A)~', with A given below.



Algorithm: details

To define A: let
d = (&1,...,&20) = (1,,1,2,,2)

be a vector which determines strength of a priori information for
each component z;.

Here a has

first 5 components = .1

last 15 components = .2

reflects lower dependence of a priori assumptions on first 5
parameters (i.e., temperature, humidity, other non-chemical
parameters);

greater on the last 15 (chemical parameters).



Algorithm: details

Choose covariance matrix of Gaussian to be the operator
C = (A*A)~!, where

A = "regularization operator" = d(x)(1 + aD)d(x),
with

20 830

aD = ZCLZ' 5,30

1=1 [




Algorithm: details
Here d(x) reflects density of sample points on R via
d(x) = (1+6(x)) ",

where
6(x) = smoothed density of sample points

. 1/20
= <1 - Ze(xxk)> .
=1

Note: order 30 above reflects smoothness level we expect of
solution function f; note in 20 dimensions we need at least 10

derivatives for f to be continuous.

Thus distribution P concentrated on smooth solutions f; minimizing
solution given by radial basis functions (see below)



Algorithm: details

Then MAPN theorem (below) shows probability distribution d P( f)
has density function p(f) = Cye 241",

If we assume error vector e = (¢q, ..., €,) is Gaussian:
_ 2 _ _ 2
pe(€) = Cye 15el” = e IBNV/=Y)I,

(with B = n x n covariance matrix), then:
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Algorithm: details

Thus maximizer of p(fly) is

f= arg;nin JAfII? + |IBINf —y)|? ()
= ZCkG(X, Xk) (**)
k=1

where

G (x,x") = radial basis function = Green's function for operator A

= F (1 - a (iﬁi)?’O) (x = x),

1=1

where &, = Fourier variable dual to z;.



Algorithm: details

Note: (*) is same functional appearing in regularization solutions in
SLT, and the solution (**) is the same as spline solution in IBC.

Solution of problem:

Choose f as in (**) for best approximation of i-o relationship

y = f(x)



How does 1t work?
6. How does it work?

How do we define density p(f) corresponding to prior probability
distribution d P(f) on the set of all functions?

Analogously to standard parametric MAP methods.
Use a definition of probability density p(f) corresponding to

probability distribution d P( f) which works for both parametric (finite
dimensional) and nonparametric (function) spaces.

Define p(f) to be proportional to the ratio f;g:(({;;)) of probabilities of

balls of radius r near f and 0, in the small » limit.



How does 1t work?

This limit exists for most generic measures in infinite dimension,
including Gaussian measures:



How does 1t work?

] . 1 P(B.(f :
MAPN Theorem: (a) The limit p(f) = 715% PEBT((O%) exists for a

Gaussian measure P on a function space F' with covariance
operator C', defining its density function.

(b) If C = (A*A)~! as above
o(f) = Ke 2llAfI°

In finite dimensions this reduces to ordinary density function of the
Gaussian distribution.

http://math.bu.edu/people/mkon

Thank you!



