Unique Recovery from Edge Information

Benjamin Allen

Center for Mathematical Sciences and Applications

Harvard University, Cambridge, MA 02138
Dept. of Mathematics
Emmanuel College, Boston, MA 02215
Email: benjcallen@gmail.com

Abstract—We study the inverse problem of recovering a
function f from the nodes (zeroes) of its wavelet transform. The
solution also provides an answer to a generalization of the Marr
conjecture in wavelet and mathematical vision theory, regarding
whether an image is uniquely determined by its edge information.
The question has also other forms, including whether nodes
of heat and related equation solutions determine their initial
conditions. The general Marr problem reduces in a natural way
to the moment problem for reconstructing f, using the moment
basis on R? (Taylor monomials =), and its dual basis (derivatives
5(®) of of the Dirac delta distribution), expanding the wavelet
transform in moments of f. If f has exponential decay and the
wavelet’s derivatives satisfy generic positions for their zeroes,
then f can be uniquely recovered. We show this is the strongest
statement of its type. For the original Gaussian wavelet unique
recovery reduces to genericity of zeroes of so-called Laplace-
Hermite polynomials, which is proved in one dimension.

I. INTRODUCTION

The question of whether nodes (zeroes) of a wavelet trans-
form are sufficient to recover the original function f has
several areas of application, in addition to its role as a recovery
and inverse problem in wavelet theory. These areas include
mathematical vision (e.g. the Marr conjecture) and the study of
nodes of heat and also more general PDE. Full recovery using
smooth wavelets has been shown impossible ([18], [9]) for
some non-decaying f; however such functions are unphysical
as images. The question for compactly supported and decaying
f has remained open [20], [18], [14], [15].

A source of attention to this problem has been in mathe-
matical vision and image compression [24], [14]. It is known
that the sparse information in the sketch of an image is
sufficient for natural vision systems (e.g. humans) to extract
almost all of its salient information [16], [15]. David Marr
[16] analyzed natural vision from a neural viewpoint, and
developed a detailed theory of edge detection as an image
compression and recovery method. The theory of Marr and
others has led to a more basic understanding visual recognition
in all neural systems. Marr also formulated a mathematical
question related to recovery from edge information, essentially
asking whether an image can be recovered from its multiscale
edges.

Mathematically an image’s edges are defined as zero cross-
ings of the second derivative of its blurred versions at multiple
scales (see diagram), with edges obtained as lines of maximal

978-1-4673-7353-1/15/$31.00 (©2015 IEEE

Mark Kon
Dept. of Mathematics and Statistics
Boston University, Boston, MA 02115
Email: mkon@bu.edu

Fig. 1. An image blurred at several scales with the Ricker wavelet
¢ = AG. This is done line by line using a one dimensional
wavelet derivative. Left side: original image, then convolved with differ-
ent scalings of ¢. Right side: corresponding edges at increasing scales.
https://www.math.ucdavis.edu/~saito/talks/ucdmathbio.pdf

contrast. Such edges at a discrete set of scales {o;} form the
family of multiscale edges of the image. A standard example
of such blurring is Gaussian blurring, with resulting edges



known as Gaussian edges.

The mathematical conjecture postulated that knowing the
edges of a image uniquely determine it, i.e., that a picture can
be recovered from its multiscale edges. The one dimensional
version, studied by Mallat [14], [15] in 1989, posits that when
a picture is decomposed into horizontal lines, the union of the
edges in these lines determine the image. The conjecture has
been studied for a period of time, and Jaffard, Meyer and Ryan
[18], [9] showed it false for non-smooth wavelets and some
images (infinite in extent) that do not decay.

In this announcement we present a solution to a generalized
version of the Marr problem, showing that recovering f
generally requires that f have exponential decay, and that
the blurring wavelet ¢ (assumed smooth) satisfies genericity
conditions for the positions of its nodes and those of its
derivatives. The proof relies on the moment problem for
recovering f. Thus, whether a picture is determined by its
multiscale edges depends on the problem of reconstructing f
from its moments [, 2* f(z)dzx; this in fact would seem to
form the natural setting for the mathematical problem.

II. PRELIMINARIES

We consider the wavelet transform of a function f using a
wavelet ¢(x), in d dimensions. By convention this is

Wf(o,z) = 0c¥?f(z) % ¢o () (1)
where ¢(z) = ¢(—z),
() = 07d¢(x/0) 2)
and * denotes the standard multidimensional convolution
fxg(z)= /Rd f(@—y)g(y)dy. 3)

For convenience we also denote ¢ as the wavelet; below
all conditions on ¢ will be unchanged by reflection and also
apply to ¢. We wish to find when f is uniquely determined (up
to a constant multiple) by the nodes of its wavelet transform,
assuming the integrals above converge absolutely. We study
the more general question of whether f can be recovered from
the nodes of W f(o, ) restricted to an arbitrary given scale
sequence {o; }22,. This is an inverse recovery problem for the
continuous wavelet transform [14], [15], [18], [9], and also
for the dyadic transform [14], [15] (which is continuous in
the space variable x but discrete in the scaling o, generally
with g; = 21)

In mathematical vision theory [16], convolutions of an
image f with a sequence of discrete rescalings ¢, of ¢(x) =
G(z) = We‘“z/ 2 form the Gaussian smoothings of the
image. Letting the Ricker (Gaussian derivative) wavelet M (x)
be AG(z) (with A the Laplacian), the zeros of f % M, (x)
represent the maximal change points of the blurred images and
hence its edges at the scales o;. The nodes of f * M, (x) thus
form a sequence of increasingly sparse representations of the
image f. In hypoelliptic PDE theory a solution u(x,t) with
initial condition f(x) att = 0 f is effectively a convolution of
f with a heat or more general kernel of the above form ¢, and

the above question reduces to whether the nodes of such an
u(x,t) (generally at a discrete set of times ¢;) determine the
solution u. There has also been study of this PDE version of
the recovery question (partly motivated by the Marr problem),
as well as study of the forward problem characterizing nodes
of solutions given the initial data f [22], [1].

In wavelet theory this has been studied empirically and
theoretically by Mallat [14], [15], and Meyer [18], [9]. Mallat
showed that, based on a (non-smooth) cubic spline wavelet,
it is possible and practical to reconstruct images from multi-
scale edge information. The theoretical question for Gaussian
wavelets has also been studied for special cases and with
additional assumptions [3], [20], [17], [16], [8], [24], [2].

The general form of the problem asks for minimal condi-
tions on a wavelet ¢ and a class of functions f that guarantee
that a function in this class can be uniquely recovered from its
multiscale ¢-nodes, i.e., from the zeroes of (¢) (0~ "x) * f(x)
for a discrete sequence of scales o;. This is equivalent to
asking whether the zeroes of the convolutions ¢, (x) * f(z)
determine f. The function f is sometimes called the initial
condition because of the fact that f * ¢,(z) solves the heat

equation with initial condition f, if we rescale time ¢ = o2,

III. MAIN RESULTS ON UNIQUE RECOVERY

For the multiindex o« = (ay,...,aq4) of non-negative
integers «;, we define |a| = ), ;. We define the partial

derivative (here = (x1,...,24)) by
0 0
= (z). 4

We will specify the initial assumptions on the function f to
be reconstructed, and also the wavelet ¢. We begin by assum-
ing that f belongs to a class P of sub-exponential functions
¢ with topology generated by the seminorms (assumed finite)
| £1l.0. = sup, e~ 71#1|5* f|. We assume ¢ belongs to the dual
space P’ of distributions growing no more than exponentially.
This allows the convolution f * ¢ to be defined.

We define a regular (or transverse) zero w of a function
g(w) as a zero, in every neighborhood of which the function
takes both positive and negative values. We define a fixed order
(homogeneous) derivative to be any combination of derivatives
of fixed order n of the form

o™ =" 0. 5)
le|=n

We will assume that our wavelet ¢ satisfies a genericity
condition with regard to the zeroes of its derivatives, namely
that for any two fixed order derivatives ¢(™ and ¢("™) with
n,m any non-negative integers, the regular zeroes of (™)
are not contained in the zeroes of ¢("), and that both have
regular zeroes for all n,m. The existence of zeroes for all
fixed order derivatives ¢(") can be easily checked to be a

necessary condition for Theorem 1 below to hold.
The main theorem on recovery of an image f(x) from edge
information provides sufficient conditions for the Marr conjec-
ture, assuming edge information is obtained from any wavelet



¢(x) € P. Here and below, unique recovery (determination)
of a function f means unique up to mutiplicative constants.

Theorem 1. Assuming the above genericity condition on a
given ¢(x) € P and given any sequence of scales o; —— o0,

11— 00

any function f € P’ is uniquely determined (up to constant
multiples) by the multiscale edges of its wavelet transform, i.e.,

the zeroes of the family {f(x) x ¢p(x/0;)}32;.

This theorem is the strongest of its kind in two ways. First,
it fails to hold if the exponential decay condition on f is
weakened to algebraic decay - this still leaves the question
open for the small class of functions such as e~ In*2 whose
decay is between algebraic and exponential.

Theorem 2. The above theorem fails to hold if the condition

f € P’ is weakened to a requirement of algebraic decay, i.e.,
that |f(z)| < C|z|~® for some a > 0.

Second, we can show that the above genericity condition
on the zeroes of ¢ and its derivatives is the best of its kind, in
that minimal weakenings of the condition make the theorem
false. For example, if the genericity condition is weakened to
require only that, for all fixed order derivatives ¢(") and ¢("™),
the regular zeroes of ¢(™) are not contained in the regular
zeroes of ¢("), then simple one-dimensional counterexamples
exist.

As a simple corollary, the function f is of course uniquely
determined by the zero set of its transform f x ¢, (z) (i.e.,
assuming the zero set is known for all & > 0) and also by
its dyadic nodes, (i.e., in the special case where o; = 2t
above). For the case of the one dimensional Ricker wavelet
o(x) = %G, where G = (27)~1/2e=*"/2 (Gaussian edge
information), the genericity condition (non-containment of
regular zeroes of one derivative within the zeroes of another)
can be proved using a result of Schur [21], stating that the even
Hermite polynomials Hs,, () and normalized odd polynomials
Hypq1(z)/x are irreducible (cannot be factored) over the
rationals. From this the Marr conjecture for recovery of f(x)
from dyadic Gaussian edges (zeroes of f(x)*¢(27"z)) follows
in one dimension. The multidimensional Gaussian wavelet
case (¢ = AG(z) in R?) similarly reduces to showing that
the zeroes of ¢(x) = Ae=*"/2 and of its derivatives (in d
dimensions) satisfy the genericity conditions. This in turn
reduces to proving the same genericity conditions for zeroes
of a family of multivariate Hermite polynomials (so-called
Laplace-Hermite polynomials), obtained as the polynomial
coefficients of the (multivariate) derivatives 0%¢(x).

IV. ADDITIONAL RESULTS

In addition to the above results for general wavelets, there
are some additional specific results related to the recovery of
one dimensional signals under Gaussian edges (i.e., nodes of
convolutions with the Ricker wavelet).

For the specialization to the Ricker (Gaussian derivative)
wavelet, we first consider the anti-intuitive nature of the
results, which would indicate that asymptotically large features
in the image (i.e., the edges at arbitrarily high scales o;) are

what allow it to be recovered. In fact any infinite sequence of
scales o; (i.e., not necessarily just large scales) will lead to
unique recovery, as long as the sequence does not converge to
0, i.e., to microscopic scales.

Corollary 1. For recovery of one dimensional signals
f(x), € R using Gaussian edges,

(a) Under the above hypotheses, unique recovery is possible
from edge information for any infinite sequence of positive
scales o;, as long as o; does not converge to 0, i.e. it has a
non-zero limit point.

(b) The statement of the main theorem is in general false if
o T 0; in fact there are images [ € P’ for which Gaus-

sian edge information at arbitrarily small scales 0c; —— 0
11— 00

is insufficient to recover f.

V. PROOFS USING MOMENT EXPANSIONS

The above results are based on the duality of two bases for
R™, the monomials 2 = x7" ... x5 (the basis for Taylor ex-
pansions) and the dual basis of derivatives 6(*) = 9*3; of the
Dirac delta distribution dy, defined by do(g(x)) = (do, g(x)) =
g(0) for smooth g. This is based on the fact that when all
quantities are well-defined, (0°dg, f(x)) = (do, (—1)1*l0> f),
s0 (0%0g,2%) = (=1)1*lal,p, where a! = ay!... 4! and
L ifa __5 . In the proper distributional space of
0 otherwise

analytic functions, a function f € P’ can be expressed as

f(z) = Z a8

dag =

(6)
with equality when

(7

Thus the coefficients ¢, determining f are multiples of
moments of f, given as (f,z%) = [, f(z)z*dz. Such
singular expansions have been used implicitly in the multipole
expansions of electrodynamics, and have also been applied to
study other systems of PDE [6], [19], [4], [13], [7], [23]. A
general study appears in [5].

After convolution of both sides with ¢, (6) now takes the
form

o p(2)0) ~ S cal—0) N6 (@), (8)
[}
which forms an asymptotic expansion [5]. Specifically, partial
sums summing up to || = N are correct to order ¢~V =% as
o — o0.

This can be extended to show that the above asymptotic
series is locally uniform in w = f and also to show that
such expansions are also correct as asymptotic expansions for
functions f with only finitely many moments, up to as many
terms in (8) as can be defined by (7).

For the following theorem we define functions f € P’ to
be of negative exponential order , since functions in this class
satisfy |f(x)| < Ce *ll,



Theorem 3. Let the wavelet ¢ € P, (thus ¢ grows sub-
exponentially) and let f € P’ (so [ is of negative exponential
order). Then the asymptotic expansion (8) is valid uniformly
on bounded subsets of w = x /o, i.e., the normalized difference

f* (;5(,(:5) — Z ca(_l)la\(U)—Ia\—d¢((x)(x/0) _ O(U—N—d)’lalznoﬂ

la|<N
locally uniformly in w = x /o for any nonnegative integer N.

This means that on any compact set W of w, the above
difference is smaller than Co~N~? (as ¢ — oo) for arbitrarily
small C' > 0. This uniformity is needed to recover the initial
condition f.

We renormalize f * ¢, by a power of ¢ (which does not
change the zeroes), defining (recall = ow)

F(o,w) = a™ (f % ¢pg ) (ow).

Then by (8) as 0 — oo,

F(o,w) ~ Z (_1)|a\caano—|a\¢(a)(w)’

la|>no
where ng is the lowest order |«| appearing in the above sum.
Thus, locally uniformly in w, the series converges to its lowest
term,
F(o,w)

¢
o Flw)= (1™ > e @w).  ©)
lel=n0

Correspondingly, the zeroes of F'(o,w) converge to those of
F(w). Note in particular that the zeroes of F(o,w) stabilize
as 0 — oo in the variable w = 2 /0. This means that the zero
curves in the x variable itself move out to co; the normalization
of = by dividing by ¢ is thus needed for the formation of stable
limits of the node contours. We denote the node points w with
F(w) = 0 the asymprotic zero set E.

Essentially it is the known information regarding conver-
gence of the w-zero sets E; of F(oj,w) to their limit F
(the zero set of F') together with their effective rates of
convergence, that will uniquely determine the initial condition
f(x). Specifically, let w’ € E be an asymptotic zero that
is regular (i.e. transverse, so F(w) takes both signs in all
neighborhoods of w’). Then there is a sequence w; € E; with
w; — w’. Using uniformity of the asymptotic expansion and
replacing w by w;, we obtain

0= F(oj,w;) ~ Z (*1)‘alcagnoila“ﬁ(a)(wj)-

la|=no

This asymptotic statement means that the above expansion in
o converges to 0 as o — oo to all orders o~ * for k > 0:

. l (_1)|a| no—lal 4 (a _
Jmof D0 oMW wy) =0,
no<|a|<no+l

We now separate the sum on the left side above into the highest
and lower powers aé (note that including the term aé in front,

the total power of ¢ in this highest term is 0). Thus we have
(note w; — w’)
j*)OO

—1)lel
> g w)

_1ylal
Z (3 oo Hlol gle) (4 ) — 0,

no<|a|<ng+l

+ lim

Jj—00

This equation yields a recursion giving the moments c,, of
f with order || = ng + 1 (in the first sum above), in terms
of the lower order moments ¢, in the second sum. Assuming
as an induction step that all moments ¢, for f are known for
|a] < mg+ k, then this equation uniquely determines the sum

—1)le
Z ( ;j U(]Ca¢(a) (’LU/)

|a|=no+I

(10)

for all w’ in the regular zero set of F(w), and note that (10)
is a homogeneous derivative of ¢, i.e., a linear combination of
derivatives of fixed order ng + /. Assuming (genericity condi-
tion) that the regular zero sets of the different homogeneous
derivatives ¢"(w) of this type are never contained in the zero
sets of any other homogeneous derivatives ¢ (w), it follows
that the collection of ¢(®)(w') (for |a| = ng + I fixed) are
linearly independent on the asymptotic edge E (the zero set
of F). Hence knowing the sum (10) on w’ € E uniquely
determines the coefficients (moments) c,, of order || = ng+1,
completing the inductive step of the recursion for determining
the moments ¢, of f.

Recovering f then becomes a moment problem for f,
which is solvable for functions f € P’, which have negative
exponential order.

On the other hand, if f fails to have exponential decay and
instead has only algebraic decay (see above), it can be shown
that the Marr conjecture (even for Gaussian derivative wavelets
¢) does not hold.

VI. GEOMETRY OF HEAT EQUATION NODES

The Marr conjecture for the Ricker (Gaussian derivative)
wavelet has traditionally been studied using properties of heat
equation solutions [16], [17], [3], [8], [9], [24]. Our results
(see above) on unique recovery under the one dimensional
Gaussian derivative wavelet involving sequences of scales o;
that have positive limits or limit points, as well as the negative
results for scales o; that converge to 0, also depend on the
geometry of solutions to the heat equation.

These follow from some new results described below,
related to nodes (zeroes) of solutions wu(z,t) of the one
dimensional heat equation % = %% for x € R, t > 0, with
initial condition u(x,0) = f(z). The nodes of Au(z,t) =
%u(w,t) (which we denote as edge contours) are algebraic
curves with strong analyticity properties. We mention some
new results on such heat equation solutions, in particular that
as t increases, new nodes cannot appear spontaneously. This
extends prior results on this topic [1], [24], [2], [8], [11], [22].
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Fig. 2. A one dimensional image and its Gaussian edges at increasing scale
o (vertical axis).

Theorem 4. If the initial condition f is an L' function of
negative exponential order (ie. f(x) < Ce k=l for some
C,k > 0) then the edge contours of u(x,t) at a fixed time
to form a subset of those at time t1 < ta.

Note that if u(z,t) = Awv(z,t) (with A now the one
dimensional Laplacian) and v has an initial condition g(x)
with negative exponential order, then the edge contours of
v(z,t) are the nodes of u(z,t). Since v can be recovered
from these curves, so can u, giving:

Corollary 2. If u(z,t) is a solution of the one dimensional
heat equation with initial condition f whose second integral
g(z) = [*_dy [’ _dz f(2) has negative exponential order,
then u(x,t) is uniquely determined by its nodes for t > 0, and
more generally by its nodes at any infinite sequence of times
t; > 0 that does not converge to 0.

VII. CONCLUSION

Though this paper reduces the general Marr conjecture to
genericity conditions on the zeroes of the wavelet and its
derivatives, it would be interesting to study these conditions
in particular for the Ricker wavelet ¢ = AG with G the
Gaussian. As mentioned, this is equivalent to genericity of
zeroes of the Laplace-Hermite polynomials, which we have
proved in one dimension (in which the Laplace-Hermites are

just Hermite polynomials of order 2 or more); proof of the
genricity condition for the Laplace-Hermite polynomials in
higher dimensions remains open.
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