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Abstract
A crucial goal in post-genomic research is unravelling the regulatory network of

transcription factors and their target genes. This is especially important in the human
genome where many TFs are involved in disease progression. Similarly to our previous
work in the yeast genome, machine learning methods can be applied to known examples
of target genes to create decision rules that aid in the identification of new targets. Using
targets in publicly available databases as training examples, classifiers have been built
and tested for 153 human TFs. These classifiers base their decisions upon the integration
of three types of sequence information: composition, conservation, and
overrepresentation.

Overall, 33 TF classifiers achieve a precision greater than 60%. Many high
confidence predictions are made for all TFs, and all targets are made available for
download on our web server and as supplementary information. To highlight the power
of this method we briefly discuss the regulator Oct4, a known marker for stem cells.
Results for the TF Wt1 are then discussed in detail, showing that many of the predictions
share functions with the known targets. Since Wt1 and its targets are intimately involved
in development of Wilms’ tumor, new models for its action in cancer are proposed. We
show that our predictions for Wt1 are statistically enriched for genes which fall into
specific chromosomal loci known to be associated with Wilms’ tumor. This finding
suggests new models for Wilms’ tumor progression where dysregulation in these regions
is important for disease progression, either through loss of Wt1 or loss of the associated
region. Genes in significant loci include several oncogenes and tumor suppressors which
are candidates for involvement in cancer progression and may partially explain the
observed clinical and biochemical data on this cancer. The anti-apoptotic effects of Wt1
are also discussed along with several new target genes, including bax and pde4b, which
may help mediate this effect. Finally, motif discovery is used to propose a new binding
motif for Wt1 which will be useful in later site identification.

SVM-based classifiers provide a comprehensive platform for analysis of
regulatory networks, and the results can be used to make new hypothesis for disease
progression in humans. Obvious extensions of this work include incorporating new kinds
of data, and expanding the analysis to more TFs when binding data becomes available.

Background
Although many factors influence the regulation of genes, the fundamental step of

regulatory control is the association of transcription factors (TFs) with their binding sites
in DNA. In simpler organisms it is often sufficient to search for these sites in a gene’s
promoter, which is typically defined as anywhere from 800 to 5000 base pairs upstream
of the transcription start site. In higher organisms like humans, TFs may exert regulatory
control at a distance of many kilobases from the start site. Complex genomes also show
greater incidence of binding sites occurring within 5' UTRs, introns, 3' UTRs, and even
far downstream of a gene.

Any TF will have a varying affinity for different nucleotide strings and will thus
bind to a repertoire of similar sites in the genome. This site affinity is often described as
a motif or preferred pattern of bases. A popular representation of the binding motif is the
position specific scoring matrix (PSSM) [1-4], which gives the frequency of observed



nucleotide bases at each position of a known motif. However, results produced by
scanning DNA with basic PSSM models are often overwhelmed by a high rate of false
positive predictions[5]. To improve target prediction, we have previously employed a
more sophisticated supervised learning method in Saccharomyces cerevisiae which
combines many types of genomic data to assist binding site classification[6-8]. We have
also developed a method to rank specific genomic features (e.g., presence or conservation
of a particular k-mer) to select those which are most important for identifying target
promoters for a particular TF[7,9]. We now apply these methods, based on the support
vector machine (SVM) to produce separate classifiers for 153 TFs in the human genome
in an attempt to discover new regulatory interactions important to human disease.

The genomic datasets used include sequence information from promoters (2kb
upstream and 5' UTR), introns, and 3' UTRs and take account of 1) sequence
composition, 2) sequence conservation in 8 vertebrate genomes, and 3) statistical over-
representation. These datasets have high dimensionality (see Methods), often containing
thousands of numerical features. During classifier construction SVM recursive feature
elimination (SVM-RFE)[10] is used to reduce the feature set to a manageable size.
Figure 1 provides a graphical scheme describing classifier construction. Feature ranking
as well as feature set and classifier construction are described more completely in the
Methods section. Each gene used in the analysis is described by a numerical vector.
Each number, or feature, represents one measurement taken in the genome, for example,
the number of occurrences of a particular k-mer in a gene’s promoter. SVMs efficiently
handle high dimensional datasets and have proven effective in a wide range of biological
systems [11-17].



Figure 1 - SVM Framework
This figure shows the data mining scheme for making TF classifiers. 100 classifiers are constructed for
each TF, each using a different random sub-sample of the negative set. A classifier built on the training set
is evaluated using leave-one-out cross validation (center, gray box). For every cross-validation split, the
top 1750 features are selected using SVM-RFE and the classifier is trained and finally used to classify the
test set (left out sample). This process is repeated 100 times, and the accuracy for the procedure is the
average of the 100 cross-validation accuracies.

SVMs require the input of positive (known target) genes and negative (non-target) genes
to develop a decision rule which can be used to classify new genes as bound or not bound
by a TF. Positive examples are curated from several publicly available databases and
also ChIP-chip experiments when available (see Methods). The negative set is always
chosen randomly from the genome to be of equal size to the positive set. Clearly a
random choice of negatives can introduce bias into the classifier since some of the chosen
genes may in fact be targets. To resolve this difficulty, each TF classifier is constructed
one hundred times, each with a new sampling of negatives. The performance of each
classifier is evaluated by cross validation and a final accuracy measurement is then the
average accuracy from all one hundred trials. This will average out the fluctuations
which occur due to possible errors in negative set selection.



This analysis produces several highly accurate classifiers for human TFs, several
of which are important to human development and disease. First, new predictions for
Oct4 targets are discussed as well as possible implications for diabetes. Finally, Wt1 is
examined in detail for its role in cancer development and progression. Many biologically
relevant targets are proposed and possible new functions are highlighted, such as
involvement in nervous system development, tumor migration, interaction with Wnt
signalling, and regulation of new targets responsible for resistance of apoptosis. The
predicted targets of Wt1 are also significantly enriched in genes which lie in
chromosomal regions known to be associated with progression of Wilms’ tumor. This
finding is significant since now disease progression can be linked to dysregulation or loss
of Wt1’s targets in these regions. Motif discovery methods are also used to propose a
new binding motif for Wt1 which may be useful in future site identification.

Results and Discussion
Not surprisingly, many TF classifiers show poor performance. Of 153 TFs tested,

33 showed a PPV greater than 0.6. This may be partly due to the fact that our defined
promoter region is large and in some cases may be thousands of base pairs long. This
size may interfere with the ability of the SVM to identify important regions. Also, the
greater complexity and combinatorial regulation occurring in the human genome may not
be captured well by single TF classifiers. Finally, most human TFs have few known
targets, making it less likely that a classifier will find the correct decision rule. It should
be noted that the performance measures are taken with the classifier decision threshold
set to 0.5. This is the optimal classifier threshold since it indicates that genes exceeding
the threshold have better than a 50% chance of being a true target. For the predictions we
discuss below, we only accept genes as targets if they pass a threshold of 0.95 (i.e., 95%
likelihood of being positive) on average for all 100 classifiers constructed for a particular
TF. Thus, several TFs with lower accuracies may still provide meaningful results at this
stringent threshold. Results for all TFs are available as Supplementary Information File
1, and on our web server at http://cagt10.bu.edu/TFSVM/Main%20Frame%20Page.htm.
Supplementary File 1 also contains some brief notes on the naming conventions of TFs,
and how the classifiers were constructed.

SVM Classifiers Identify Biologically Relevant Targets for Oct4
Regulation by Oct4 is essential in early development, and expression of Oct4 is

important for maintaining the pluripotency of embryonic stem cells[18,19]. ChIP-chip
analysis of Oct4 and several other regulators revealed Oct4 can act in concert with the
TFs Nanog and Sox2[19]. The SVM classifier for Oct4 has an accuracy of 67% and a
PPV of 66%.

It has been discovered that Oct4 targets are enriched for transcription factors, with
many of these also being important for development[19]. In fact, the known targets in
the training set for Oct4 are significantly enriched in the GO term “transcription
regulatory activity” (50 genes, p=2.1e-16), and new SVM predictions also show
enrichment in this category (111 genes, p=6.7e-34). The known targets and new
predictions share many statistically enriched functional terms, including “developmental
protein”, “homeobox”, and “Wnt signalling pathway.” For a complete list see
Supplementary File 2.



The authors in [19] noted that several targets of Oct4 fall into the Wnt signalling
pathway. Indeed, both the known target set and the new predictions are enriched for
genes in the Wnt pathway (p = 0.01, p = 0.0014 respectively). Figure 2 shows the Wnt
pathway, highlighting SVM predictions alongside previous knowledge. The new targets
targets in this pathway fit well with the known biology of Oct4. Other research has
indicated that activation of the Wnt pathway can help sustain pluripotency[20]; thus,
these results fit with the hypothesis that Oct4 acts to maintain the undifferentiated state
by activating the Wnt pathway in stem cells. It is of interest that several of predicted
targets of Oct4 appear to be genes that inhibit Wnt signalling, which suggests that Oct4
may repress these genes.

Figure 2 - Oct-4 Targets in the Wnt Signalling Pathway
Known targets of Oct-4 are filled in green and new predictions are filled in red. Known
targets and predicted targets are statistically enriched for genes falling in this pathway.

Oct4 regulates several genes involved in Diabetes
Oct4 is known to have high expression in stem cells and reduced expression once

cells begin differentiation. Oct4 binds the promoters of several genes important for
differentiation, and some of these are factors which can contribute to the onset of
diabetes. The known targets of Oct4 are significantly enriched in genes falling into the
KEGG pathway Maturity Onset Diabetes of the Young (MODY, p=0.039). Particularly,
Oct4 binds the gene PDX1, which causes Type IV MODY when mutated[21]. SVM
predicts two new targets falling in this pathway. Most interesting is NeuroD1, which has



been shown to cause Type VI MODY when mutated[22]. This evidence hints that Oct4
may play role in diabetes if its mode of regulation is disturbed. Others have hypothesized
that disruption of normal transcriptional regulation is the ultimate cause of MODY
TypeVI when NeuroD1 is lost[21]. This leaves open the possibility that the disruption of
NeuroD1 targets could also be achieved by dysregulation or mutation of Oct4. Further
experiments will be needed to explore this possibility.

Regulation by Wt1
The Wilms tumor 1 (wt1) gene codes for an essential transcription factor which

plays a role in normal urogenital formation. The wt1 gene is found to be overexpressed
in an assortment of cancers including leukemia[23], lung[24], colon[25], thyroid[26],
breast[27], and several others[28-32]. Mutations in wt1 are also known to result in
predisposition to Wilms’ Tumor, a renal malignancy accounting for 8% of childhood
cancers[33]. Wt1 can either activate or repress target genes, and has a complex role in
carcinogenesis acting as both a tumor suppressor[34,35] and an oncogene[36] depending
on its context. To further complicate its role, the gene encodes 4 splice variants, each
thought to have separate functions and slightly different DNA binding affinities.
Regulation by Wt1 is not well defined, and its function may be modulated by post-
translational modification or by physical contact with other regulators, including possible
dimerization with other proteins or with itself.

The classifier for Wt1 has a prediction accuracy of 68% and a PPV of 75%. 354
new predictions were made for Wt1 at 95% confidence, and these genes show significant
enrichment for several KEGG pathways in which there are previously annotated targets.
These pathways are Map-kinase (p = 1.1e-3), adherens junction (p = 8.7e-3), and calcium
signalling (p = 4.7e-2). Furthermore, the new target set is statistically enriched (p = 1.7e-
4, hypergeometric test) in genes showing differential expression in a microarray
study[37] of wild-type vs. mutant wt1 tumors. These data suggest that the classifier for
this TF is revealing accurate biological hits.

May Regulate Apoptosis Through Factors Other than Bcl2
As a tumor suppressor, Wt1 is thought to represses several growth factor

receptors, and expression of Wt1 has been shown to impede cell growth in a variety of
tumors. Inconsistent with this function is the fact that 90% of sporadic Wilm’s tumors
maintain expression of wildtype Wt1[37-39]. Further investigation has shown that Wt1
provides protection against programmed cell death. This protection is mediated, at least
in part, by interaction with p53 to suppress its apoptotic effects and by direct activation of
the anti-apoptotic gene bcl-2[36].

Several newly predicted targets are genes known to be anti-apoptotic or otherwise
regulate cell death (Supplementary File 3). One notable prediction is that Wt1 binds the
promoter of bax, a pro-apoptotic gene whose protein product binds to bcl2 and disrupts
its repression of apoptosis. A possible hypothesis is that Wt1 acts in a dual fashion,
activating the expression of bcl2 while repressing bax. Also interesting is the predicted
target pde4b, which can augment apoptosis when inactivated[40]. The possibility that
Wt1 activates pde4b suggests that loss of Wt1, and hence downregulation of pde4b,
contributes to the sensitivity to apoptosis observed in wt1 mutants.



Plays an Important Role in Migration and is Directly Linked to the Wnt Pathway
Recent evidence indicates that Wt1 is involved in cellular migration[41].

Currently no known targets of the TF are directly involved in this process. Functional
grouping of our target predictions reveals a group of 67 genes which are annotated to
cellular adhesion, cytoskeleton, or cell motility (Supplementary File 4). This group
includes many cadherin and contactin genes known to be involved in adhesion and
migration. Notably, this set also contains wasf1, irsp53, afadin, and arhgap6, which are
all closely related to actin polymerization and associated with adherens junctions and cell
migration. Also of interest are nectin and α-catenin, core components of the adherens
junction. Regulation of these genes by Wt1 may play an important role in the modulation
of cellular adhesion and migration in cancer.

The complex role of Wt1 requires that different genetic changes must take place
in wildtype-wt1 vs. mutant-wt1 tumors. Tumors expressing normal wt1 have increased
resistance to cell death and respond poorly to treatment with chemotherapeutic agents
that act by induction of apoptosis. Tumors with wt1 mutations may become sensitized to
apoptosis and thus tend to accumulate compensatory mutations which activate cellular
growth and proliferation. In a study examining a group of wt1-mutant tumors, it was
discovered that 75% also contained mutations in the β-catenin gene[37], a known
oncogene and crucial component of the Wnt-signalling pathway. The Wnt pathway
influences cell growth, development, migration, and adhesion, and is known to take part
in carcinogenesis. It is also a pathway often disregulated in cancer, containing several
oncogenes and tumor supressors. Thus popular hypotheses suggest that wt1-mutant
tumors become sensitive to apoptosis and thus require a compensating mutation in beta-
catenin which constitutively activates the Wnt pathway. The malignancy may adapt to
the loss of wt1 by accumulating other mutations as well

Near the plasma membrane β-catenin links cadherins in adherens junctions to α-
catenin. Cancerous cells undergoing metastasis progress through what is called the
Epithelial-Mesenchymal Transition (EMT), a hallmark of which is a dissociation of the
E-cadherin/ β-catenin/α-catenin complex. This would result in loss of adherens junctions
and increased cell mobility. The disruption would release β-catenin, allowing it to
translocate to the nucleus where it cooperates with the TCF/LEF complex to activate
targets of the Wnt pathway. Clearly, disruption of adherens junctions and increased Wnt
signalling are important for progression in some cancers. Wt1 may affect this process in
two major ways. First, the prediction that Wt1 regulates α-catenin is intriguing, implying
that Wt1 could directly disrupt adherens junctions by repressing α-catenin. This may
also activate Wnt signalling by freeing β-catenin from adherens junctions, and allowing it
to translocate to the nucleus where it participates in Wnt target activation. Second, Wt1
may contribute to the activation of Wnt signalling by controlling a key Wnt regulator,
TCF, which appears in our list of predicted targets. The view that Wt1 enhances Wnt
signalling is supported by expression experiments showing reduction in Wnt4 expression
in wt1 knockout cells[42].

Alternatively, Wt1 may act in the opposite way to repress Wnt signalling which is
consistent with its role as a tumor suppressor. This view is supported by the fact that
several (but not all) Wnt targets are upregulated in wt1-mutant as opposed to wt1-
wildtype tumors. Current research has shown that mutations of β-catenin in Wilms
tumors is essentially confined to cases where wt1 is also mutated. Mutations hyper-



activating Wnt signalling may then be the primary reason for the observed upregulation
of Wnt targets in wt1-mutants. There is also some evidence that Wt1 may actually bind
the promoter of β-catenin itself, for which the SVM model assigns a probability of 0.7.
Closer inspection of the β-catenin promoter reveals 11 matches to the Wt1 consensus site
within 600bp of the β-catenin transcriptional start site (Figure 3). The true functional
relationship between Wt1 and the Wnt pathway will have to be elucidated through further
experiments, but there is strong evidence that Wt1 is intimately involved with the Wnt
pathway and likely exerts significant regulatory control on Wnt mediators and targets.

Figure 3 - Possible binding sites for Wt1 near the β-catenin gene
This figure shows the region spanning 1200bp centered on the β-catenin transcriptional
start site. Potential Wt1 binding sites are highlighted as follows: red-
GCGGGGGCG[68], green-GNGNGGGNG[69], blue-GNGNGGGNGNS[70].

Role of Wt1 in Nervous Tissue Development and Disease
The set of combined targets (known and newly predicted) for Wt1 is significantly

enriched in several annotation categories related to the nervous system and neuron
growth: transmission of nerve impulse (p = 0.0069), synaptic transmission (p=0.013), and
neurotransmitter receptor (p=0.058). Many genes are annotated to similar categories but
do not show statistical significance (Supplementary File 5). These may still be important
since they all relate to development or function of the nervous system. Observations



have been made of neuronal differentiation markers in Wilms’ Tumor[43], demonstrating
that some mechanism in these tumors is activating nerve cell signature genes. Wt1 has
been shown to be required for normal development of the neurons in retinal[44] and
olfactory[45] tissues. Furthermore, analysis in the developing mammalian embryo has
shown presence of Wt1 in brain, tongue, and retinal tissues[46]. Surprisingly, one highly
significant predicted target for Wt1 is the tas1r1 gene, which is a receptor responsible for
detecting sweet compounds. This implies that, aside from its proven roles in eye and
olfactory development, Wt1 is also involved in taste sensation. Also along these lines are
the potential new targets eya1 and eya4, which are member of a gene family known to be
involved in kidney, eye, and ear development.

Another supporting prediction is the mtmr2 gene which, when mutated, can cause
Charcot-Marie-Tooth Diseases type 4B[47]. This is a demyelinating disease of the
nervous system which causes sensory and motor defects. It is interesting that one of the
chromosomal loci implicated in Charcot-Marie-Tooth Disease is 11p15[48], also known
to be involved in Wilms’ Tumor. Finally, 48 high confidence targets can be annotated
as being either voltage gated ion channels, integral to the plasma membrane, or being part
of a neurotrophic ligand/receptor interaction (Supplementary File 5). Taken together, this
is compelling evidence that Wt1 is thoroughly involved in the nervous system, and may
play a role in diseases affecting nerve tissue. This view appears to agree with symptoms
observed in the clinic. Patients with WAGR syndrome, which causes predisposition to
Wilms’ Tumor, show mental retardation and aniridia, a defect of the iris. Also, there are
reported cases of deafness and mental retardation accompanying Denys-Drash
syndrome[49], which also predisposes patients to Wilms’ Tumor.

Some Predicted Targets of Wt1 fall into disease associated chromosomal loci
Wilms’ tumors have largely been studied in individuals genetically predisposed to

tumor formation due to genetic abnormality (as opposed to sporadic Wilms’ Tumor).
The syndromes resulting from these abnormalities and the associated chromosomal
changes are listed in Table 1. It has become clear that deletions, duplications, and other
abnormalities at chromosomal loci 11p13[50,51], and 11p15[52] are involved in
predisposition to Wilms’ Tumor. Other studies have also implicated loss of
heterozygosity in regions 16q, 1p, and 22q as correlating with poor outcome in Wilms’
Tumor patients[53,54]. One study used a range of probes to determine that loss of
heterozygosity(LOH) in the specific region near 11p15.5 is associated with Wilms’
Tumor[55].

The wt1 gene itself is located in 11p13, and naturally explains why disruption of
this region contributes to tumor formation. Potentially important genes in the other
chromosomal regions have been postulated, including igf2 and p57 in 11p15. The true
factors causing predisposition to Wilms’ Tumor at these regions remains unknown, and it
is hypothesized that regulatory targets of Wt1 in these regions might contribute to
disease. One suggestion is that the region 11p15 may contain tumor suppressor activity
since allelic loss in this region correlates with tumor formation. Clearly a more defined
set of regulatory targets for Wt1 would greatly improve the understanding of this gene’s
role in normal tissue as well as in carcinogenesis. Figure 4 depicts the genetic changes
which may lead to tumor formation by the syndromatic or sporadic pathways.



Figure 4 - Pathways to Wilms’ Tumor
Genetic changes leading to Wilms’ Tumor. Cancer occurs through the sporadic or the syndromatic
pathway. Few cases of tumor occurring in the syndromatic pathway also exhibit loss of
heterozygosity(LOH) or loss of imprinting(LOI) at other loci whereas sporadic cases of Wilms tumor
regularly exhibit LOH and LOI. The gray bar indicates that the LOH events may occur anywhere along the
development of the sporadic cancer. Most sporadic cases (but not all) have a wild-type or overexpressed
wt1 gene. It is possible that LOH, LOI, and other genetic changes in sporadic tumors compensate for the
presence of wt1. LOH at regions 16q and 1p correlate with poor prognosis. Other regions often showing
LOH are listed. Regions 16p13.3, 17q25, and 4p16.3 are statistically enriched for predicted targets of Wt1
but their involvement in tumor formation is unknown.

Strikingly, examining the predicted targets of Wt1 shows that these genes occur
more frequently than expected by chance in cytobands 11p15.5 (p = 6.3e-5), and 1p36.3
(p = 6.3e-4). Three of the new targets for Wt1 in 11p15.5 are possible tumor suppressors:
Rnh1[56], Igf2as[57], and CD151[58]. If in fact Wt1 normally activates these genes it
could explain why inactivation of Wt1 or loss of genes in 11p15.5 contributes to cancer
formation since in both cases expression of these tumor suppressors would be abolished.
Also in 11p15.5 is mucdhl, a cadherin like protein. Loss of mucdhl could contribute to



loss of cell adhesion by disruption of adherens junctions. This could be another
significant step toward tumor migration and metastasis.

Although 16q and 22q, which correlate with poor prognosis, have no statistical
enrichment, predicted targets do lie in these regions. Examination of the genes in these
regions allows the assembly of a model of Wilms’ tumor which explains some of the
observed clinical behaviour. There are predicted target genes with known tumor
suppressor activity in the regions 16q and 1p which could explain why loss of these
regions correspond to poor clinical outcome (cbfa2t3[59] in 16q, and eno1[60] in 1p).
Also lying in 1p is the predicted target pde4b which, as mentioned earlier, can augment
apoptosis when inactivated[40].

Other chromosomal regions with strong enrichment include 16p13.3 (p = 4.3e-6,
most significantly enriched location), 17q25 (p=1.7e-5) and 4p16.3 (p=4.3e-3). These
regions contain several new predictions which may be relevant to tumor formation. At
16p13.3 new targets include kremen2 and tsc2, both of which are thought to be tumor
supressors. At 17q25 lies the predicted target fasn. Inhibition of fasn can cause
apoptosis[61] and also sensitizes cancer cells to treatment by chemotherapy[62].
Activation of fasn could provide another mechanism by which Wt1 supports resistance to
apoptosis. At the 4p16.3 locus the gene fgfr3 is likely to be a target and is known to be
important for cancer progression[63,64].

Recent analysis has shown that there are far fewer LOH events in tumors
containing wt1 mutation, suggesting that regions shown to undergo LOH harbor genes
regulated by Wt1 or downstream effectors[65]. This supports the idea that without
inactivation of wt1, tumor cells must undergo alternative mutations which selectively
activate or inactivate its targets. Then, once the tumor suppressor effects of Wt1 are
abrogated, the cancerous cells are free to benefit from the apoptosis resistance conferred
by active Wt1.

Not all predictions make perfect sense, and highlight the complexity of Wt1
regulation and its role in tumor formation. For example, igf2 (11p15.5) is a proposed
target of Wt1 and is a potent growth factor proposed to be important for cancer
progression. Igf2 is upregulated in many Wilms’ tumors due to either duplication of the
11p15 paternal allele (often in concert with LOH on the maternal allele) or removal of
silencing on the maternal allele (loss of imprinting)[66]. Whereas some evidence shows
that loss of genes at 11p15 is crucial for cancer formation, other results demonstrate that
abnormal activation of some genes is also important. Since dysregulation of genes at
11p15 is due to epigenetic changes as well as genetic mutations, it is difficult to predict
the implications of regulation by Wt1 without direct experimentation. Indeed, the
specific genomic changes may vary between tumors, specifically between sporadic and
syndromatic cases of Wilms’ tumor.

Finally, Wt1 is predicted to regulate the transcription factor Pou6f2. This factor
has been suggested to be a tumor suppressor, and mutations in Pou6f2 confer a
predisposition to Wilms tumor[67]. Repression or activation of pou6f2 by Wt1 could
have a profound effect on carcinogenesis. Loss of activation through mutation of Wt1
could enhance cancer progression in -mutant individuals. Alternatively, increased
repression of pou6f2 through overexpression of Wt1 could intensify malignancy in -
wildtype tumor patients. More studies will be necessary to uncover the details of the
interplay between these two factors.



Since many chromosomal regions have been observed to undergo allele loss,
duplication, or other mutation in Wilms’ tumor, we have compiled a list of known targets
and significant predictions which fall into several important regions (Supplementary File
6).

A New Binding Motif for Wt1
Discovery of a binding site for Wt1 has proven difficult since each isoform of the

regulator may bind to slightly different sequences in DNA. Dimerization with other
proteins and post-translational modifications may also alter the binding affinity in
undetermined ways. Several consensus sites for Wt1 have nevertheless been proposed
(GCGGGGGCG [68], GNGNGGGNG[69], GNGNGGGNGNS[70], and
GCGTGGGAGT[71]); unfortunately, showing that Wt1 binds to a site in vitro has
proven to be a poor predictor of binding and regulatory action in vivo[33]. The four
related consensus sites reported in the literature can be seen in Figure 5A. Our
classification based approach has yielded a set of 353 high confidence targets to add to
the set of 14 genes known to be bound. This provides a rich group from which to
perform motif discovery.

Figure 5 – Motif Discovery on Wt1 Targets
5A lists the proposed consensus binding sites for Wt1 from the literature sources mentioned in the text. 5B
shows the top ranked k-mer from each motif discovery method, including the best k-mer ranked by the



SVM model. 5C shows the top 3 PSSMs created by the Weeder algorithm. Motif discovery was
performed on all known and newly predicted targets of Wt1.

A first approach (see Methods) comes from an SVM procedure which iteratively
ranks each feature used by the classifier to determine those that are most useful in
distinguishing the known targets (positives) form the non-targets (negatives). This
method has been applied successfully to the S. cerevisiae genome to yield nucleotide
strings which matched well with the known affinities of the TFs. In this case it produces a
ranking of k-mers based on information in the training set alone, so that new predictions
do not contribute to the k-mer ranking. Two other methods have been applied to the
entire set of predictions and known targets. The first of these is oligo-analysis[72,73],
which scores each k-mer (up to k = 6) by its over-representation in promoters of the gene
set (see Methods). The second is an algorithm called Weeder[74-76] which implements
an efficient search to score and rank all k-mers of length 6, 8, and 10, while also allowing
mismatches. Weeder was one of the best performing motif discovery algorithms in a
recent comparison[77].

Figure 5B shows the top scoring k-mers from all methods. The results are
uniform in that the discovered sites are GC-rich. The 4-mer ranked highest by SVM
(CGCG) is also present in the result given by oligo-analysis and in the best 8 and 10-mers
found by Weeder. The Weeder algorithm offers a further advantage since it
automatically clusters the most similar of the significant k-mers (of any length) and
combines them into consensus site and creates a position weight matrix (PWM) based on
the occurrences of the consensus in the gene set. Figure 5C shows the top 3 PWMs
reported by Weeder. A scan of the known target promoters of Wt1 with the best PWM
shows that all but 1 contains a perfect match to this matrix. Binding by Wt1 is complex,
and these motifs may describe only one possible binding mode of the regulator.
Although experimentation is required to validate any predictions, these motifs may aid
investigators in future site identification or binding affinity studies with Wt1.
Supplementary File 7 contains the raw outputs from Weeder, oligo-analysis, and results
of scanning previously proposed consensus sites against the promoters of predicted Wt1
targets.

Materials and Method

SVM training and validation
SVM is a classification technique developed by Vapnik [78]. Binary labelled

training examples (e.g., 0, 1 or negative, positive) are feature vectors x corresponding to
individual genes, with each vector composed of genome scale sequence measurements
(see below). The measurements are the attributes, or features, of the data. Positives are
known targets of the TF while negatives are a randomly selected set of genes. The SVM
algorithm performs an optimization to find a maximal-margin hyperplane separating the
two classes of training data. Maximal-margin refers to the fact that the separator is
selected to be as distant as possible from the training points, achieving maximum



separation between classes. We have successfully applied machine learning to regulatory
analysis before[6-8], and an in-depth tutorial on SVM training is available on our web
site.

Training an SVM involves setting a parameter C, which adjusts tolerance for
misclassifications. The classifier for the Myc transcription factor was used as the
prototype for parameter selection. Five-fold cross validation was used to measure the
performance of several values of C, and the value resulting in lowest classifier error was
chosen for subsequent use in all classifiers. Tested values include: [2-7 ,2-5 ,2-3 ,2-1 ,1, 1.5,
2, 22,23,24,25,26]. The value 2-7 was reported by the SPIDER machine learning
package[79] as having the best performance.

Choosing negatives for classifier construction is difficult since there is no defined
set of genes known not to be targets. For every TF, a set of negatives is chosen randomly
to be equal in size to the positive set. 100 classifiers are made in this way using a
different randomly selected negative sets. All 100 classifiers are tested using leave-one-
out cross validation (LOOCV), and the final performance measurements (accuracy, PPV,
etc) are averaged over all trials. The full scheme is sketched in Figure XX, and closely
follows that reported in [9]. A short outline appears below.

For an example TF A:
1. Assemble positive set (denote size as n). Sample n genes randomly to

construct the negative set.
2. Spit the data for LOOCV.
3. Use SVM-RFE to rank all features in the training set.
4. Construct SVM classifier on best 1750 features. Save full feature ranking.
5. Classify left out example.
6. Repeat steps 2-5 to complete LOOCV. Save all feature rankings.
7. Calculate performance statistics (Accuracy, PPV, etc.)
8. Repeat steps 1-7 100 times.
9. Calculate final performance statistics (i.e., mean Accuracy, mean PPV, etc.).

A new gene can be classified by applying all 100 classifiers for TF A to the feature vector
for that gene. Each classification produces a posterior probability (see below), and the
mean of all 100 probabilities is calculated. Typically, if P > 0.5, a gene is classified as a
positive. In this paper we increase the cutoff to P ≥ 0.95 to select only the highest quality
targets for each TF. Feature rankings on each training set are saved and used to calculate
the final ranks of each feature (see below).

Classifying new targets and prediction significance
As described in [80] and applied in [9] the SVM can produce a probabilistic

output. This is a class conditional probability of the form P(target | SVM output), where
distance from the gene to the hyperplane classifier. We refer to this output simply as the
true positive probability and denote it using the upper-case P (e.g., P ≥ 0.95), while other
statistical tests which output p-values are denoted in lower-case (e.g., p ≤ 0.01). The
probability is calculated by fitting a sigmoid function to the SVM output using 3-fold
cross validation. Thus, genes lying at a greater distance from the hyperplane on the
positive side will have higher probabilities (i.e., more likely to be positive). This form of
probabilistic output makes sense as one would expect genes falling deep into the positive
region to be more likely to be targets. New genes are classified using the average



probability assigned by all 100 classifiers for a given TF. An average posterior
probability greater then 0.5 is generally considered to yield a positive, but only genes
with P ≥ 0.95 are accepted in this study as high confidence targets.

Genomic feature selection and ranking
As demonstrated in the yeast genome [9], the SVM algorithm can be used to

select and rank features. One main output of the SVM procedure is the vector w, which
contains the learned weights of each data feature. The w vector is calculated directly as

i

s

i
ii y xw 




1

 ,

where yi is the class label of the training example xi, which is the feature vector for gene
i. Here s is the number of support vectors, or genes which lie directly on the classifier
margin. These are essentially the examples which are closest to the separator, and thus
the only ones necessary to define its placement. The numbers αi are values of the
Lagrange multipliers used during the optimization process[78,81,82].

Features with larger w components are more useful in distinguishing between the
positives and negatives. The SVM recursive-feature-elimination (SVM-RFE) algorithm
uses the w vector to iteratively select important features[10]. The original algorithm
begins by training an SVM and discarding the attributes which have smallest weights
[10]. The process is repeated until a set number of features remains. In this study, half of
the features are removed during each iteration until 2050 features remain. They are then
eliminated individually until 1750 are left. As indicated in the Discussion, the target of
1750 is determined by exploring the effect of feature selection on the prototype TF-
classifier for Myc.

Since ranking is performed on each training set during a LOOCV, and because
100 classifiers are cross validated for each TF, many feature rankings are accumulated for
each TF. Lastly, a count is taken of the number of times each feature appears in the top
40 of any ranking. The final rank is made by sorting the features according to the
frequency of their appearance as a “top 40 feature.” Genes high on this list are
consistently ranking high over all cross validation trials and all choices of negative set,
making them reliable in that they are robust to changes in the training set.

Feature Datasets
Several regulatory sequence regions were extracted for 18660 human genes from

the UCSC genome browser[83,84]. These regions consist of: 1) 2kb of sequence
upstream of the transcription start site plus the 5’UTR, 2) all introns, 3) 3’UTR.
Three different types of feature measurements were taken on this sequence data.
1. k-mers —The distribution of all k-mers in a gene’s regulatory regions may be used to
predict whether it is bound or not-bound by a TF. Feature vectors are formed by
enumerating all possible strings of nucleotides of length 4, 5, and 6. The number of
occurrences of each string is counted in a gene’s promoter region, and this string of
counts is the feature vector for the gene. For each gene, the counts for 4-mers, 5-mers,
and 6-mers are normalized separately to mean 0 and standard deviation 1. This is
separate from the feature normalization which occurs prior to SVM training. k-mer



counts are performed separately and summed for each regulatory region mentioned
above.
2. k-mer Overrepresentation —This method calculates the significance of occurrences of
each k-mer in the a gene’s regulatory regions. This method is the same as that reported in
our previous work[9] and follows the equations set out by RSA tools[72,73]. Here, the
background sequence set is all gene promoters (2kb upstream), 5’UTRs, introns, and
3’UTRs. E-values were used and calculated according to

 DpvalueEvalue  10log ,

where D is the number of k-mers in the analysis. Higher E-values correspond to more
significant k-mers.
3. Conserved k-mers—This method for constructing a k-mer conservation matrix is based
on output generated by the PhastCons algorithm[85,86] and follows the procedure
outlined in our work in the yeast genome[9]. Introns and 3’UTRs are now also included
for the human genome. Essentially, k-mers are counted in gene regulatory regions as in
data method 1, but each k-mer instance is weighted according to its level of conservation
in a multiple alignment of sequences from human and seven other vertebrate genomes
(chimp, dog, mouse, rat, chicken, zebrafish, fugu). Genomic alignments and PhastCons
scores may be downloaded from the UCSC genome browser website[83,84].
If a k-mer is not conserved, it receives a count of 1 just as it would in simple k-mer
counting.

As in[9], the weighting metric is:

cP1
1

where Pc is the average PhastCons score for a particular k-mer. β is an adjustable
parameter which controls how much the conservation of a k-mer increases its count. In
this study we choose β = 0.75, so that an element with a maximum conservation of 1 has
a count of 4.

Functional Analysis
Statistical enrichment of gene sets for particular gene functions was calculated using the
Functional Annotation Tool in DAVID 2006[87]. Enrichment for functions was
calculated using default background sets provided in DAVID. DAVID uses the Fisher
Exact test to measure functional enrichment in annotation categories from numerous
public databases (e.g., KEGG pathways, GO terms, Spir keywords, etc). Enrichment for
chromosomal locations was found using DAVID but searching only for enriched
cytobands. Genes were also clustered according to functional similarity using the
Functional Annotation Clustering tool in DAVID.

Positive Binding Targets
Known binding sites for human TFs were parsed from several public databases in

January 2006. The databases used are Oregano[88], TRDD[89], Transfac[90],
Ensembl[91], and the Eukaryotic Promoter Database[92]. Many binding sites were also



manually curated from literature sources. Several large-scale experimental binding
studies were also examined to identify binding sites[19,93-97]. In all cases, binding sites
found outside of the sequence region studied (i.e., 2kb upstream, 5' UTR, introns, and 3'
UTR) were excluded. Lists of literature curated binding sites with Pub-med references
and a spreadsheet of binding interactions parsed from the above databases can be
downloaded in Supplementary File 1

Motif Discovery
Motif Discovery was performed on Wt1 known targets plus new predictions.

Sequence data for each gene went to 1kb upstream and 0.5kb downstream of
transcriptional start. The sequence data was downloaded from the human promoter
extraction database at Cold Spring Harbor Laboratory[98]. Motif discovery was
performed with Weeder[75] and Oligo-analysis[72] available at the RSA-tools
website[73]. The full raw output from Weeder and Oligo-analysis along with the
accompanying fasta files is available as Supplementary File 7. Matching of consensus
strings to promoter regions was performed using RSAtools.

Table 1 Syndromes causing predisposition to Wilms’ Tumor

Syndrome Occurrence of
Wilms tumor

Chromosomal
abnormality

Ref.

WAGR 98% by age 6 Deletion at 11p13 OMIM: #194072
Beckwith-
Wiedemann

96% by age 8 Duplication of
paternal 11p15.
May result in
increased gene
expression(IGF2) or
inactivation(p57).

OMIM: #130650

Denys-Drash 96% by age 5 Missense mutation
in WT1 (11p13
locus) causing
dominant negative
phenotype.

OMIM: #194080

Table 1
This table highlights the syndromes causing predisposition to Wilms’ Tumor development, and the genetic
changes associated with the syndrome. These include WAGR[50] Denys-Drash[52], and Beckwith-
Wiedemann[51] syndromes.

Supplementary Information

Supplementary File 1
This file contains several sub-folders. The folder “Classifier Results” provides a file
containing the probabilities for all possible associations of TFs with genes in humans. It



also contains a list of classifiers and their associated performance measures. The folder
“Literature_curated_targets” contains the known TF-target interactions taken from
databases and the literature. Any interactions manually curated from primary literature
are listed, and the Pubmed ID of the article used is given. All files are annotated so as to
be self explainatory or have an accompanying Readme file.

Supplementary File 2
This file contains two excel spreadsheets providing the functional annotations of known
targets and predicted targets of Oct4 respectively. These are annotations as provided by
the DAVID system at NIH and include the statistical significance of each functional
category.

Supplementary File 3
Using both known and newly predicted targets, this file contains a list of genes which
relate to apoptosis as given by the DAVID functional analysis tools. The genes appear
several times in various, similar annotation categories which are related to cell death
pathways

Supplementary File 4
Using just the newly predicted targets, this file contains a list of genes which relate to
cellular adhesion, cytoskeleton, or motility as given by the DAVID functional analysis
tools.

Supplementary File 5
Using both known and newly predicted targets, this file contains a list of genes which are
annotated to terms by DAVID which are somehow related to the nervous system. Three
main categories are present (represented by folders) which each contain several
functional terms and the genes annotated to them. The three main categories are “Neuron
related”, “Sensory perception”, and “Voltage gated channels and membrane receptors.”

Supplementary File 6
Using both known and newly predicted targets, this file contains a list of genes and the
chromosomal cytobands to which they are mapped. P-values generated by DAVID are
also given to show statistical enrichment.

Supplementary File 7
This file contains the results of running the Weeder algorithm on 1) the set of known and
newly predicted (P ≥ 0.95) targets of Wt1, and 2) the known targets of Wt1. Sequence
regions used are as defined in Methods. The file also contains the results of Oligo-
analysis. Also included is the matching results after scanning the literature derived
consensus sites for Wt1 against the full set of Wt1 targets (predicted and known).



Author contributions.

DH coded the required software in Matlab and Perl, conceived of many of the design
implementations, and wrote this article. All authors made contributions to this
manuscript and the experimental design. CD initially conceived and motivated this work.
All authors read and approved the final manuscript

Competing interests. The authors have declared that no competing interests exist.

References

1. Stormo GD (2000) DNA Binding Sites: Representation and Discovery. Bioinformatics
16: 16-23.

2. Workman CT, Stormo GD (2000) ANN-Spec: a method for discovering transcription
factor binding sites with improved specificity. Pac Symp Biocomput: 467-478.

3. Schneider TD, Stormo GD, Gold L, Ehrenfeucht A (1986) Information content of
binding sites on nucleotide sequences. Journal of Molecular Biology 188: 415-
431.

4. Schneider T, Stephens R (1990) Sequence logos: a new way to display consensus
sequences. Nucl Acids Res 18: 6097-6100.

5. Fickett JW (1996) Coordinate Positioning of MEF2 and Myogenin Binding Sites.
Gene 172: 19-32.

6. Holloway D, Kon M, DeLisi C (2005) Integrating genomic data to predict transcription
factor binding. Proc of the Workshop on Genome Informatics 16: 83-94.

7. Holloway D, Kon M, DeLisi C (2006) Machine Learning for Predicting Targets of
Transcription Factors in Yeast: in press. Systems and Synthetic Biology.

8. Holloway D, Kon M, DeLisi C (2006) Machine Learning Methods for Transcription
Data Integration. IBM Journal of Research and Development on Systems Biology
50.

9. Holloway D, Kon M, DeLisi C (2006) Building Transcription Factor Classifiers and
Discovering Relevant Biological Features: submitted. PLOS Computational
Biology.

10. Guyon I, Weston J, Barnhill S, Vapnik V (2002) Gene Selection for Cancer
Classification using Support Vector Machines. Machine Learning 46: 389-422.

11. Jaakola T, Diekhans M, Haussler D (1999) Using the Fisher kernel method to detect
remote protein homologies. Proc Int Conf INtell Syst Mol Biol: 149-158.

12. Hua (2001) A novel method of protein secondary structure prediction with high
segment overlap measure:support vector machine approach. Journal of Molecular
Biology 308: 397-407.

13. Hua., Sun. (2001) Support vector machine approach for protein subcellular
localization prediction. Bioinformatics 18: 721-728.

14. Zien A, Ratsch G, Mika S, Scholkopf B, Lengauer T, et al. (2000) Engineering
support vector machine kernels that recognize translation initiation sites.
Bioinformatics 16: 799-807.



15. Wang M, Yang J, Chou K-C (2005) Using string kernel to predict signal peptide
cleavage site based on subsite coupling model. Amino Acids 28: 395-402.

16. Furey TS, Cristianini N, Duffy N, Bednarski DW, Schummer M, et al. (2000)
Support vector machine classification and validation of cancer tissue samples
using microarray expression data. Bioinformatics 16: 906-914.

17. Pavlidis P, Noble WS (2001) Gene Functional Classification from Heterogeneous
Data. RECOMB Conference Proceedings: 249-255.

18. Chambers I (2004) The molecular basis of pluripotency in mouse embryonic stem
cells. Cloning And Stem Cells 6: 386-391.

19. Boyer LA, Tong IL, Cole MF, Johnstone SE, Levine SS, et al. (2005) Core
transcriptional regulatory circuitry in human embryonic stem cells. Cell 122: 947-
956.

20. Sato N, Meijer L, Skaltsounis L, Greengard P, Brivanlou AH (2004) Maintenance of
pluripotency in human and mouse embryonic stem cells through activation of Wnt
signaling by a pharmacological GSK-3-specific inhibitor. Nature Medicine 10:
55-63.

21. Fajans SS, Bell GI, Polonsky KS (2001) Molecular Mechanisms and Clinical
Pathophysiology of Maturity-Onset Diabetes of the Young. N Engl J Med 345:
971-980.

22. Malecki MT, Jhala US, Antonellis A, Fields L, Doria A, et al. (1999) Mutations in
NEUROD1 are associated with the development of type 2 diabetes mellitus. 23:
323-328.

23. Inoue K, Sugiyama H, Ogawa H, Nakagawa M, Yamagami T, et al. (1994) WT1 as a
new prognostic factor and a new marker for the detection of minimal residual
disease in acute leukemia. Blood 84: 3071-3079.

24. Yusuke Oji SM, Hajime Maeda, Seiji Hayashi, Hiroya Tamaki, Shin-Ichi Nakatsuka,
Masayuki Yao, Eigo Takahashi, Yoko Nakano, Hirohisa Hirabayashi, Yasushi
Shintani, Yoshihiro Oka, Akihiro Tsuboi, Naoki Hosen, Momotaro Asada,
Tatsuya Fujioka, Masaki Murakami, Keisuke Kanato, Mari Motomura, Eui Ho
Kim, Manabu Kawakami, Kazuhiro Ikegame, Hiroyasu Ogawa, Katsuyuki
Aozasa, Ichiro Kawase, Haruo Sugiyama, (2002) Overexpression of the Wilms'
tumor gene <I>WT1</I> in <I>de novo</I> lung cancers. International Journal of
Cancer 100: 297-303.

25. Oji Y, Yamamoto H, Nomura M, Nakano Y, Ikeba A, et al. (2003) Overexpression of
the Wilms' tumor gene WT1 in colorectal adenocarcinoma. Cancer Science 94:
712-717.

26. Oji Y, Miyoshi Y, Koga S, Nakano Y, Ando A, et al. (2003) Overexpression of the
Wilms' tumor gene WT1 in primary thyroid cancer. Cancer Science 94: 606-611.

27. Loeb DM, Evron E, Patel CB, Sharma PM, Niranjan B, et al. (2001) Wilms' Tumor
Suppressor Gene (WT1) Is Expressed in Primary Breast Tumors Despite Tumor-
specific Promoter Methylation. Cancer Res 61: 921-925.

28. Oji Y, Yano M, Nakano Y, Abeno S, Nakatsuka S-i, et al. (2004) Overexpression of
the Wilms' tumor gene WT1 in esophageal cancer. Anticancer Research 24: 3103-
3108.



29. Oji Y, Nakamori S, Fujikawa M, Nakatsuka S-i, Yokota A, et al. (2004)
Overexpression of the Wilms' tumor gene WT1 in pancreatic ductal
adenocarcinoma. Cancer Science 95: 583-587.

30. Oji Y, Inohara H, Nakazawa M, Nakano Y, Akahani S, et al. (2003) Overexpression
of the Wilms' tumor gene WT1 in head and neck squamous cell carcinoma.
Cancer Science 94: 523-529.

31. Ueda T, Oji Y, Naka N, Nakano Y, Takahashi E, et al. (2003) Overexpression of the
Wilms' tumor gene WT1 in human bone and soft-tissue sarcomas. Cancer Science
94: 271-276.

32. Oji Y, Suzuki T, Nakano Y, Maruno M, Nakatsuka S-i, et al. (2004) Overexpression
of the Wilms' tumor gene WT1 in primary astrocytic tumors. Cancer Science 95:
822-827.

33. Lee BS, Haber D (2001) Wilms Tumor and the WT1 Gene. Experimental Cell
Research 264: 74-79.

34. Luo X, Reddy J, Yeyati P, Idris A, Hosono S, et al. (1995) The tumor suppressor gene
WT1 inhibits ras-mediated transformation. Oncogene 11: 743-750.

35. Haber D, Park S, Maheswaran S, Englert C, Re G, et al. (1993) WT1-mediated
growth suppression of Wilms tumor cells expressing a WT1 splicing variant.
Science 262: 2057-2059.

36. Mayo M, Wang C, Drouin S, Madrid L, Marshall A, et al. (1999) WT1 modulates
apoptosis by transcriptionally upregulating the bcl-2 proto-oncogene. EMBO 18:
3990-4003.

37. Li C-M, Kim CE, Margolin AA, Guo M, Zhu J, et al. (2004) CTNNB1 Mutations and
Overexpression of Wnt/{beta}-Catenin Target Genes in WT1-Mutant Wilms'
Tumors. Am J Pathol 165: 1943-1953.

38. Coppes M, Liefers G, Paul P, Yeger H, Williams B (1993) Homozygous Somatic
WT1 Point Mutations in Sporadic Unilateral Wilms Tumor. PNAS 90: 1416-
1419.

39. Little M, Wells C (1997) A clinical overview of WT1 gene mutations. Human
Mutation 9: 209-225.

40. Moon E, Lee R, Near R, Weintraub L, Wolda S, et al. (2002) Inhibition of PDE3B
Augments PDE4 Inhibitor-induced Apoptosis in a Subset of Patients with Chronic
Lymphocytic Leukemia. Clin Cancer Res 8: 589-595.

41. Jomgeow T, Oji Y, Tsuji N, Ikeda Y, Ito K, et al. (2006) Wilms' tumor gene WT1
17AA(-)/KTS(-) isoform induces morphological changes and promotes cell
migration and invasion in vitro. Cancer Science 97: 259-270.

42. Sim E, Smith A, Szilagi E, Rae F, Ioannou P, et al. (2002) Wnt-4 regulation by the
Wilms' tumour suppressor gene, WT1. Oncogene 21: 2948-2960.

43. Hussong J, Perkins S, Huff V, McDonald M, Pysher T, et al. (2000) Familial Wilms'
Tumor with Neural Elements: Characterization by Histology,
Immunohistochemistry, and Genetic Analysis. Pediatric and Developmental
Pathology 3: 561-567.

44. Wagner K-D, Wagner N, Vidal VP, Schley G, Wilhelm D, et al. (2002) The Wilms'
tumor gene Wt1 is required for normal development of the retina. EMBO 21:
1398-1405.



45. Wagner N, Wagner K-D, Hammes A, Kirschner KM, Vidal VP, et al. (2005) A splice
variant of the Wilms' tumour suppressor Wt1 is required for normal development
of the olfactory system. Development 132: 1327-1336.

46. Armstrong J, Pritchard-Jones K, Bickmore W, Hastie N, Bard J (1993) The
expression of the Wilms' tumour gene, WT1, in the developing mammalian
embryo. Mechanisms of Development 40: 85-97.

47. Bolino A, Muglia M, Conforti FL, LeGuern E, Salih MAM, et al. (2000) Charcot-
Marie-Tooth type 4B is caused by mutations in the gene encoding myotubularin-
related protein-2. 25: 17-19.

48. Othmane KB, Johnson E, Menold M, Graham FL, Hamida MB, et al. (1999)
Identification of a New Locus for Autosomal Recessive Charcot-Marie-Tooth
Disease with Focally Folded Myelin on Chromosome 11p15. Genomics 62: 344-
349.

49. Jadresic L, Leake J, Gordon I, Dillon M, Grant D, et al. (1990) Clinicopathologic
review of twelve children with nephropathy, Wilms tumor, and genital
abnormalities (Drash syndrome). Journal of Pediatrics 117: 717-125.

50. Heyningen V, Bickmore W, Seawright A, Fletcher J, Maule J, et al. (1990) Role for
the Wilms Tumor Gene in Genital Development. PNAS 87: 5383-5386.

51. Elliott M, Maher E (1994) Beckwith-Wiedemann syndrome. Journal of Medical
Genetics 31: 560-564.

52. Meuller R (1994) The Denys-Drash syndrome. Journal of Medical Genetics 31: 471-
477.

53. Klamt B, Schulze M, Thäte C, Mares J, Goetz P, et al. (1998) Allele loss in Wilms
tumors of chromosome arms 11q, 16q, and 22q correlates with clinicopathological
parameters. Genes, Chromosomes and Cancer 22: 287-294.

54. Grundy PE, Telzerow P, Breslow N, Moksness J, Huff V, et al. (1994) Loss of
heterozygosity for chromosomes 16q and p1 in Wilms' tumors predicts an adverse
outcome. Cancer Research 54: 2331-2331.

55. Mannens M, Slater R, Heyting C, Bliek J, de Kraker J, et al. (1988) Molecular nature
of genetic changes resulting in loss of heterozygosity of chromosome 11 in
Wilms' tumours. Human Genetics 81: 41-48.

56. Fu P, Chen J, Tian Y, Watkins T, Cui X, et al. (2004) Anti-tumor effect of
hematopoietic cells carrying the gene of ribonuclease inhibitor. 12: 268-275.

57. Yang J, Chen W, Liu Z, Luo Y, Liu W (2003) Effects of insulin-like growth factors-
IR and -IIR antisense gene transfection on the biological behaviors of SMMC-
7721 human hepatoma cells. Journal of Gastroenterology and Hepatology 18.

58. Saur G, Kurzeder C, Grundmann R, Kreienberg R, Zeillinger R, et al. (2003)
Expression of tetraspanin adaptor proteins below defined threshold values is
associated with in vitro invasiveness of mammary carcinoma cells. Oncology
Reports 10.

59. Kochetkova M, McKenzie OLD, Bais AJ, Martin JM, Secker GA, et al. (2002)
CBFA2T3 (MTG16) Is a Putative Breast Tumor Suppressor Gene from the Breast
Cancer Loss of Heterozygosity Region at 16q24.3. Cancer Res 62: 4599-4604.

60. Ejeskar K, Krona C, Caren H, Zaibak F, Li L, et al. (2005) Introduction of in vitro
transcribed ENO1 mRNA into neuroblastoma cells induces cell death. BMC
Cancer 5: 161.



61. De Schrijver E, Brusselmans K, Heyns W, Verhoeven G, Swinnen JV (2003) RNA
Interference-mediated Silencing of the Fatty Acid Synthase Gene Attenuates
Growth and Induces Morphological Changes and Apoptosis of LNCaP Prostate
Cancer Cells. Cancer Res 63: 3799-3804.

62. Menendez J, Colomer R, Lupu R (2004) Inhibition of tumor-associated fatty acid
synthase activity enhances vinorelbine (Navelbine)-induced cytotoxicity and
apoptotic cell death in human breast cancer cells. Oncology Reports 12: 411-422.

63. Logie A, Dunois-Larde C, Rosty C, Levrel O, Blanche M, et al. (2005) Activating
mutations of the tyrosine kinase receptor FGFR3 are associated with benign skin
tumors in mice and humans. Hum Mol Genet 14: 1153-1160.

64. van Oers JMM, Lurkin I, van Exsel AJA, Nijsen Y, van Rhijn BWG, et al. (2005) A
Simple and Fast Method for the Simultaneous Detection of Nine Fibroblast
Growth Factor Receptor 3 Mutations in Bladder Cancer and Voided Urine. Clin
Cancer Res 11: 7743-7748.

65. Ruteshouser C, Hendrickson BW, Colella S, Krahe R, Pinto L, et al. (2005) Genome-
wide loss of heterozygosity analysis of WT1-wild-type and WT1-mutant Wilms
tumors. Genes, Chromosomes and Cancer 43: 172-180.

66. Satoh Y, Nakadate H, Nakagawachi T, Higashimoto K, Joh K, et al. (2006) Genetic
and epigenetic alterations on the short arm of chromosome 11 are involved in a
majority of sporadic Wilms' tumours. British Journal of Cancer 95: 541-547.

67. Perotti D, De Vecchi G, Testi MA, Lualdi E, Modena P, et al. (2004) Germline
mutations of the POU6F2 gene in Wilms tumors with loss of heterozygosity on
chromosome 7p14. Human Mutation 24: 400-407.

68. Rauscher F, Morris J, Tournay O, Cook D, Curran T (1990) Binding of the Wilms'
tumor locus zinc finger protein to the EGR-1 consensus sequence. Science 250:
1259-1262.

69. Fraizer G, Wu Y, Hewitt S, Maity T, Ton C, et al. (1994) Transcriptional regulation
of the human Wilms' tumor gene (WT1). Cell type-specific enhancer and
promiscuous promoter. J Biol Chem 269: 8892-8900.

70. Hewitt SM, Fraizer GC, Wu Y-J, Rauscher FJ, III, Saunders GF (1996) Differential
Function of Wilms' Tumor Gene WT1 Splice Isoforms in Transcriptional
Regulation. J Biol Chem 271: 8588-8592.

71. Nakagama H, Heinrich G, Pelletier J, Housman D (1995) Sequence and structural
requirements for high-affinity DNA binding by the WT1 gene product. Mol Cell
Biol 15: 1489-1498.

72. van Helden J, Collado-Vides J (1998) Extracting Regulatory Sites from the Upstream
Region of Yeast Genes by Computational Analysis of Oligonucleotide
Frequencies. Journal of Molecular Biology 281: 827-842.

73. van Helden J (2003) Regulatory sequence analysis tools. Nucleic Acids Research 31:
3593-3596.

74. Pavesi G, Mauri G, Pesole G (2001) An algorithm for finding signals of unknown
length in DNA sequences. Bioinformatics 17: S207-214.

75. Pavesi G, Mereghetti P, Mauri G, Pesole G (2004) Weeder Web: discovery of
transcription factor binding sites in a set of sequences from co-regulated genes.
Nucl Acids Res 32: W199-203.



76. Pavesi G, Mereghetti P, Zambelli F, Stefani M, Mauri G, et al. (2006) MoD Tools:
regulatory motif discovery in nucleotide sequences from co-regulated or
homologous genes. Nucl Acids Res 34: W566-570.

77. Tompa M, Li N, Bailey TL, Church GM, De Moor B, et al. (2005) Assessing
computational tools for the discovery of transcription factor binding sites. Nature
Biotechnology 23: 137-144.

78. Vapnik V (1998) Statistical Learning Theory. Text:The Nature of Statistical Learning
Theory.

79. Weston J, Elisseeff A, Bakir G, Sinz F, et al SPIDER: object oriented machine
learning library: [ http://www.kyb.tuebingen.mpg.de/bs/people/spider/ ].

80. Platt JC (1999) Probabilistic Outputs for Support Vector Machines and Comparisons
to Regularized Likelihood Methods. Advances in Large Margin Classifiers, MIT
Press.

81. Tan PN, Steinbach M, Kumar V (2006) Introduction to Data Mining; Harutunian K,
editor: Pearson Addison Wesley.

82. Sholkopf B, Smola AJ (2002) Learning with Kernels. MIT Press.
83. Karolchik D, Hinrichs AS, Furey TS, Roskin KM, Sugnet CW, et al. (2004) The

UCSC Table Browser data retrieval tool. Nucl Acids Res 32: D493-496.
84. Karolchik D, Baertsch R, Diekhans M, Furey TS, Hinrichs A, et al. (2003) The UCSC

Genome Browser Database. Nucl Acids Res 31: 51-54.
85. Siepel A, Haussler D (2004) Combining Phylogenetic and Hidden Markov Models in

Biosequence Analysis. Journal of Computational Biology 11: 413-428.
86. Siepel A, Bejerano G, Pedersen JS, Hinrichs AS, Hou M, et al. (2005) Evolutionarily

conserved elements in vertebrate, insect, worm, and yeast genomes. Genome Res
15: 1034-1050.

87. Dennis GJ, Sherman BT, Hosack DA, Yang J, Gao W, et al. (2003) DAVID:
Database for Annotation, Visualization, and Integrated Discovery. Genome
Biology 4.

88. Montgomery SB, Griffith OL, Sleumer MC, Bergman CM, Bilenky M, et al. (2006)
ORegAnno: an open access database and curation system for literature-derived
promoters, transcription factor binding sites and regulatory variation.
Bioinformatics 22: 637-640.

89. Kolchanov N, et al. (2002) Transcription Regulatory Regions Database (TRDD): its
status in 2002. Nucl Acids Res 30: 312-317.

90. Matys V, Kel-Margoulis OV, Fricke E, Liebich I, Land S, et al. (2006)
TRANSFAC(R) and its module TRANSCompel(R): transcriptional gene
regulation in eukaryotes. Nucl Acids Res 34: D108-110.

91. Birney E, Andrews D, Caccamo M, Chen Y, Clarke L, et al. (2006) Ensembl 2006.
Nucl Acids Res 34: D556-561.

92. Schmid CD, Perier R, Praz V, Bucher P (2006) EPD in its twentieth year: towards
complete promoter coverage of selected model organisms. Nucl Acids Res 34:
D82-85.

93. Odom DT, Zizlsperger N, Gordon DB, Bell GW, Rinaldi NJ, et al. (2004) Control of
Pancreas and Liver Gene Expression by HNF Transcription Factors. Science 303:
1378-1381.



94. Zhang X, Odom DT, Koo S-H, Conkright MD, Canettieri G, et al. (2005) Genome-
wide analysis of cAMP-response element binding protein occupancy,
phosphorylation, and target gene activation in human tissues. PNAS 102: 4459-
4464.

95. Cawley S, Bekiranov S, Ng HH, Kapranov P, Sekinger EA, et al. (2004) Unbiased
Mapping of Transcription Factor Binding Sites along Human Chromosomes 21
and 22 Points to Widespread Regulation of Noncoding RNAs. Cell 116: 499-509.

96. Kim J, Bhinge A, Morgan X, Iyer V (2005) Mapping DNA-protein interactions in
large genomes by sequence tag analysis of genomic enrichment. Nature Methods
2: 47-53.

97. Wei C-L, Wu Q, Vega VB, Chiu KP, Ng P, et al. (2006) A Global Map of p53
Transcription-Factor Binding Sites in the Human Genome. Cell 124: 207-219.

98. Xuan Z, Zhao F, Wang J, Chen G, Zhang M (2005) Genome-wide promoter
extraction and analysis in human, mouse, and rat. Genome Biology 6: R72.


