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Reviewed by Mark A. Kon

What is linear algebra? Perhaps it is most simply described as the study of finite-
dimensional vector spaces and the matrices that act on them as linear operators. This
subject seemed to have been conquered a few decades ago until the advent of high-
powered computers and the detailed study of computational methods. Computers are
suited to linear operations, and nonlinear operations can often be reduced to sequences
of linear ones, for example, in solving nonlinear differential equations using Runge-
Kutta and other algorithms. The demand in numerical mathematics for such things as
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solving systems of linear equations, finding eigenvalues, and inverting matrices has
led to a torrent of research on analysis of algorithms that implement these operations
efficiently. Research into these questions continues unabated today.

A curious fact about linear algebra is that for a long time, it has been both every-
where and nowhere in advanced mathematics. Though by implication linear algebra
focuses on finite dimensional spaces, functional analysis has to an extent co-opted and
appropriated much of the thought and language of linear algebra. The spectral theory
done in functional analysis is more general and suited to normed linear spaces, and it
contains much of finite dimensional spectral theory. Nevertheless, there is also much
in finite dimensional linear algebra that is lost in its functional-analytic version, such
as determinants, characteristic polynomials, and canonical forms.

In any case, linear algebra is a basic building block of mathematics. Mathematicians
accept that we and others who use mathematics on any level above calculus should be
thoroughly familiar with it. Moreover, it is “effective”: if one runs across a problem
that can be put in a linear algebra context, one will generally find the tools for tack-
ling it.

The importance of linear algebra in analysis was made especially clear to me in
an undergraduate-level applied mathematics course I taught recently. It focused on
wavelet theory, a subject whose basic concepts are very usefully developed using the
viewpoint of linear algebra. The notion of a multiresolution analysis in wavelet theory
involves sequences of nested vector spaces, and many of the “pedestrian” terms of lin-
ear algebra come up in short order. Concepts involving linear independence, spanning,
orthogonality, complementary spaces, and other topics in basic linear algebra were
introduced in my class in very natural and practical contexts.

Linear algebra texts in recent years have been predominantly for undergraduates
and have been dominated by two categories of text. The first is a “practical” yet gener-
ally rigorous approach geared to the second or third year student in engineering, com-
puter science, or the physical sciences. The topics in such books have become very
standardized; they include basic vector space theory (linear dependence, subspaces,
etc.), linear systems, eigenvalues and eigenvectors, and perhaps things such as singu-
lar value decompositions and the concept of an abstract vector space. The philosophy
behind such texts is that linear algebra is an important applied discipline that should
nevertheless be presented in the context of a rigorous mathematical footing. (This is in
contrast to the presentation of calculus, at least in many American texts, in which rigor
decidedly takes a back seat to applications.) The second category of text is geared to
post-calculus undergraduate mathematics majors, and sometimes graduate students in
applied areas, and has a more theoretical approach. This category has traditionally in-
cluded more rigorous algebraically oriented books such as Nomizu [5] and analytically
oriented books such as Hoffman and Kunze [1], which is still in use in many courses
oriented toward undergraduate mathematics majors and advanced students. There are
also some more recent books such as Lancaster and Tismenetsky [4] and Horn and
Johnson [2], [3] that address audiences at a more advanced level.

The book under review, largely based on a course the author has taught at New York
University for a number of years, is aimed at graduate students who have already had
a beginning linear algebra course. Its scope goes well beyond that of [1] and [5], and
it is more analytically oriented than [2], [3], and [4]. The topics chosen are obviously
the favorite ones of an experienced applied mathematician. One of its aims is to re-
store theory to its rightful place in applied linear algebra, a subject whose algorithmic
aspects have come to dominate its teaching. A second aim is to present a rich base
of applications, and a third is to describe some unusual numerical algorithms. This
book reflects the author’s view that the amount of known interesting mathematics is

884 c© THE MATHEMATICAL ASSOCIATION OF AMERICA [Monthly 108



exploding, and that texts should maintain contact with the new and important aspects
of mathematics. In this text Lax puts advanced material within reach of the beginning
graduate student.

The beginning of Lax’s book includes a rapid review of the basic theory. Notions
involving linear independence, dimension, duality, and linear transformations are de-
fined, and some basic relationships are derived, such as the standard relation between
the dimensions of the kernel and the range. Lax relies on the technique of quotient
spaces to avoid variable-counting in the discussion of linear systems and to make the
proofs brief and transparent. These basic bones are fleshed out by highly nontrivial
applications such as quadrature formulas, interpolation by polynomials, and the solu-
tion of the discrete Dirichlet problem. All this is in the first thirty pages or so, and the
remainder of the book proceeds at a similar pace.

This book makes an effort to communicate some of the more unintuitive but
nonetheless important concepts in linear algebra that illustrate the mystery of the
dazzling connections between abstract mathematics and the real world. Two such
concepts are determinants and the spectrum of a matrix. These fundamental ideas,
which truly underlie so many aspects of nature, do not naturally exist at the most basic
levels of human understanding. That is, they are examples of constructed concepts that
become familiar and natural for those who work with them, but might seem unmo-
tivated to those who first set eyes on them. Mathematicians think of determinants as
second nature because of their widespread occurrence in fundamental mathematical
constructions, but their definition is somewhat unintuitive. Similarly, spectral theory
is, among other things, at the heart of the physics of quantum reality. It is a tribute to
human ingenuity that something so unexpectedly important, whose definition might
seem unmotivated at first sight, can now be a matter of common intuition for some.
The author of a linear algebra book has to deal with the fact that, however intuitively
clear such concepts may be to the expert, their motivation may seem tenuous to the
uninitiated.

Lax’s motivation for determinants is based on volumes of simplices, which to me is
the most natural introduction to this subject. This geometric context has as an imme-
diate algebraic consequence that the determinant is a multi-linear alternating function
of its vector arguments. All other properties follow from this (together with the nor-
malization det I = 1), including of course the standard formula for the determinant.

Lax’s motivation for spectral theory is quite appealing. He gives a deceptively in-
nocuous example involving the behavior of high powers of matrices, motivated by the
study of linear dynamical systems. It is worth repeating the example here: the four
matrices are

A =
(

3 2
1 4

)
, B =

(
3 2

−5 −3

)
, C =

(
5 7

−3 −4

)
, D =

(
5 6.9

−3 −4

)
.

Lax points out that

A1024 > 10700, B1024 =
(

1 0
0 1

)
, C1024 =

(−5 −7
3 4

)
, D1024 < 10−78,

where the first inequality indicates that each term of the matrix is greater than 10700

in magnitude, and an analogous interpretation holds for the last one. The second and
third cases are simply explained by observations that B2 = −I and C3 = −I , but the
key to the explanations of the first and fourth cases is the notion of eigenvectors and
eigenvalues.
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For me it was nice to see a very simple connection of spectral theory with “real life”,
if the latter can be assumed to include basic matrix maniuplations. There has been a
strong tradition (especially in advanced mathematics) of exercising students’ learning
ability with presentation of seemingly unmotivated definitions. The result has been
that the minority of students with decidedly abstract inclinations have been skilled at
picking up the definitions, while students who benefit from real world connections
with their new concepts have been largely left out. Lax’s ability to present natural
connections for unintuitive concepts is something that distinguishes this book.

There is also an interesting chapter on parameterized families of vectors and ma-
trices. The main result is that if a matrix depends differentiably on a parameter, so
do its simple eigenvalues. The subject of continuous matrix-valued functions has been
important in applied mathematics, for example, in its infinite-dimensional version in
the study of the anharmonic oscillator and its eigenvalue structure, but I did not expect
to see this subject in a text on linear algebra.

A remarkable result with a simple explanation is the phenomenon of avoidance of
crossing, where two parameterized eigenvalues seem headed for a crossing but, as in
a game of chicken, swerve and avoid each other at the last minute. The explanation is
a counting argument that shows that in the space of symmetric matrices, the matrices
with multiple eigenvalues form a submanifold of codimension 2. Thus a one-parameter
curve typically approaches but then moves away from this manifold without ever in-
tersecting it.

The book is oriented toward operator theory, and aspects of matrix algebra that do
not fit into this framework are largely omitted. For example, one finds no mention of
the utility of looking at matrices as sums of outer products. On the other hand, some
topics in the book can be viewed as nice introductions to their infinite-dimensional
cousins as studied in functional analysis. For example, the Hahn-Banach theorem is
presented as an example of convexity results, and Perron’s theorem, which states that
a positive matrix has a positive eigenvector corresponding to its largest eigenvalue,
is an analog of the positivity of fundamental eigenfunctions of positive differential
operators (after taking inverses). However, finite dimensional linear algebra is never
far behind, for example, with Caratheodory’s theorem, which states that every point of
a convex set K in an n-dimensional space can be represented as a convex combination
of n + 1 extreme points of K .

The proofs are almost always brief and to the point, and one might guess that the
author enjoyed finding pleasing and simple proofs for standard results in linear algebra.
The Gram-Schmidt orthogonalization method is derived in a seven-line proof using its
definition as a recursive algorithm. The Jordan canonical form and completeness of
eigenvectors and eigenvalues are proved using novel and striking techniques.

The applications often closely follow the theory. There is an elegant chapter on
kinematics and dynamics involving matrix and vector equations. Rotation matrices
and their infinitesimal generators, a basic example of Lie groups and algebras, are
presented in the context of dynamics, and the introduction of time dependence leads
to notions of instantaneous axes of rotation and angular velocities. Multi-particle vi-
brational systems are also studied in terms of matrix equations. Perron’s theorem is
applied to basic evolutionary biology models, in which limits of powers of stochas-
tic matrices are shown to converge to positive multiples of the dominant eigenvector.
Other sections deal with applications to economics and game theory.

Eight appendices, each only a few pages long, present surprising material not usu-
ally found in current texts. They include special determinants, symplectic matrices,
tensor products, Gershgorin’s theorem, and the multiplicity of eigenvalues. One ap-
pendix deals with Pfaff’s theorem, which states that the determinant of an antisym-
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metric matrix of even order is the square of a homogeneous polynomial in its entries.
Another appendix studies fast matrix multiplication and the possibility of multiplying
n × n matrices in less than O(n3) multiplication steps. This is done through an analysis
of Strassen’s algorithm, which gives a power of log2 7 = 2.807 . . . to replace 3 in the
complexity order. Fast matrix multiplication has become something of a sport in nu-
merical analysis and computer science, with numerous algorithms that have improved
on Strassen’s algorithm and on each other.

One interesting touch that I have not seen elsewhere in textbooks is the presence of
headings on the upper right hand side of each page that reflect the current discussion on
that page, regardless of section headings. It is quite eye-catching, though not surprising
in these days of computer-generated text. It would also have been nice to include the
chapter number on each page of the text.

Now some comments for the potential adopter of this book as a textbook for a
class. This book is not for the uninitiated student. It assumes some prior experience
with linear algebra, and it is written in a terse and informal style that is reminiscent of
lecture notes rather than a polished text. There are some lapses in correct language; for
example, the trivial subspace does not have any dimension according to the author’s
definition of dimension. The author uses the term “positive matrix” in two different
ways (though he gives a warning regarding this), and he uses two definitions of di-
rect sum of vector spaces (one on page 4 and one on page 7). The style is sometimes
compressed; for example, the definition of null space includes the fact that it is a sub-
space, something which technically requires proof. Also, there are more than the usual
number of typographical errors; students should be cautioned about these as well.

For these reasons, I recommend examination of the book before adoption. Nonethe-
less, the book is worthwhile as a text for students who are sophisticated enough to ben-
efit from its rapid-fire style. Ambitious advanced undergraduates should benefit from
this book as much as graduate students; indeed, some undergraduate programs have
adopted this book for their talented students.

The exercises in this text are distributed throughout its body; among the 17 chapters
of the book, the number of exercises per chapter ranges between two and ten, averaging
around seven. In most cases this should provide a sufficient corpus of exercises for a
typical graduate class, even if there is no bounty of additional exercises typical of an
undergraduate text. Nevertheless, the instructor may need to add exercises to those in
certain chapters.

A graduate text in linear algebra has been quite uncommon, at least in recent years;
so there has been very little competition for this niche. This book proves that there are
many topics to make such an effort worthwhile, and the text indeed fills a gap in the
graduate curriculum. All in all, because of its directed and original approach and the
overview it brings, the book is recommended for the teacher and researcher as well
as for graduate students. In fact, I think that it has a place on every mathematician’s
bookshelf. The proofs are direct, novel, and elegant, and the presentation inspires one
to rethink material that has sometimes become too routine.
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