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Abstract We describe some recently developed and new
applications of learning theory to prediction of binding by
transcription factors to DNA in yeast and humans, as well as
location of binding sites. This has potential applications to new
types of biochemical bindings as well. Some related algorithms
for identifying binding site locations are described.

1. INTRODUCTION

We present here a review of recent results and some
developing methods using kernel-based learning, for pairing
genes with DNA regions and with specific locations involved
in genetic transcription control. Identification of such
pairings is a fundamental part of understanding gene
expression regulation in a cell, is a key to identifying
fundamental biochemical interactions and pathways, and
gives basic insight into the cell's development and its
response to damage or stress. At the center of this process is
the direct interaction of transcription factors (TFs) and the
specific locations ( -elements) they bind to in DNA. Thecis
biological binding mechanism is hard to solve chemically, or
predict using other non-experimental methods (fig 1 below).
Note that the notion of TF binding with a gene here actually
involves binding of DNA regions adjacent to the gene such
as introns or the upstream or downstream region of the gene
(fig. 3 in §II), though we will sometimes loosely state that a
gene binds a TF. A typical HTH-type DNA binding is
illustrated in fig. 1.

Methods in computational biology are making it possible
to avoid experimental procedures (see, e.g., [9], [18]) for
identifying gene-TF interactions, using computed
implementations of new mathematical and statistical
methods.
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Fig. 1: DNA binding in (E. Zhuang, K. Kahn,Agrobacterium tumefaciens
[62])

Diversity of information: Information which can be
relevant to computational determination of TF-gene
identifications is highly diverse, including such elements as
microarray experiment correlations [27], [34], [6] gene
ontology [11], and phylogeny [5] information. It is sparse,
with some data available for some genes only, and very high-
dimensional (DNA string counts give thousands of data
dimensions; see §II).

Learning methods which extrapolate binding rules from
examples have the potential for widespread and practical use.
Current approaches include artificial neural network (ANN)
methods (e.g., the ANN-spec algorithm [59], which
combines weight-matrices and artificial neural networks;
radial basis function (RBF) methods [10]; kernel learning
methods, e.g., support vector machine (SVM) [58] and -
nearest neighbors ( NN) methods.

Kernel learning: In almost all cases any type of biological
and computational information applied to identification of a
TF binding target (i.e., a DNA location where it binds) needs
to be put into a structured framework. Kernel-based learning
methods, particularly support vector machines (SVMs) [56],
[57], [7], [46] give a natural basis for integrating input data.
The methods have been used in genomics in a number of
ways, for example for predicting gene function from gene
datasets [40], [28].

We complete the introduction by briefly mentioning
some of the context relating kernel learning to prior neural
net methods. Kernel learning methods started as applications
in artificial and then RBF-based neural networks [42], [15]
before their current formulations [51]. They extended into
statistical and machine learning methods, and are now used
by theoretical and applied workers in neural networks,
statisticians, and computer scientists. Kernel learning has



expanded over 20 years as neural paradigms (e.g., Grossberg
equation feedforward nets [17]) have extended to statistically
oriented RBF networks, and then kernel approaches for
regularization networks and SVM. Perceptrons have
effectively been generalized to SVM, and feedforward neural
nets now have extended to include RBF nets, with kernels
based on optimization of well-defined Lagrangians. Kernel
learning is now used in computer science, statistics, artificial
intelligence and computational biology, as well as in
neuroscience.

We remark that some of the results here are abbreviated
because of space limitations. These are given in more detail
in [23] and [25].

II. B B F S MIOLOGICAL ACKGROUND, EATURE PACE ETHODS

The transformation of DNA information into working
proteins in the cell involves transcription of DNA to pre-
mRNA, which becomes mRNA and leads to a protein, which
then determines cellular properties. We will consider only
the start of this process (transcription); see fig. 2.

Fig. 2: Transcription: a strand of DNA is transcribed into RNA
(http://biology.unm.edu/ccouncil/Biology_124/Summaries/T&T.html)

The promoter region of DNA near a given gene, is the
domain to which TF's generally bind; this is the upstream
region in the case of yeast (see fig. 3). It contains regulatory
sequences which attract transcription factors (TF's), whose
presence is required for transcription of the DNA into RNA.
Regulatory sequences are inexactly repeating patterns known
as motifs, which stand out as similar patterns across species -
their function is to attract specific TF's. TF's bind to the
promoter region at transcription factor binding sites (TFBS).

Definitions: Assume a fixed species (e.g., the yeast S.
cerevisiae) has genome (collection of genes). Generally, a
fixed TF attaches to a regulatory motif, a stretch of DNA
between 5 and 20 base pairs long (fig 3).

Fig. 3: Gene and upstream motif structure for yeast

To learn the rules for interaction with a given gene (for
fixed ), consider a training data set

where and .
Define the correct classifier

if attaches TF (under any experimental condition)
otherwise .

We wish to learn defined by

correct classification of

from the examples in . For the initial case of .S
cerevisiae, we define the gene formally by
its upstream (binding region) sequence of or less bases
(for a fixed orientation and side of the double helix).
Thus : with . For any

, form a feature vector using information about or its
upstream region This might be a string vector basedstr
on a lexical enumeration STR of all consecutive -mers
(strings of length 6), e.g., STR
STR etc., appearing in 's upstream region.
The component is then the upstream count of STR instr
gene The feature map maps into the string feature space
str strconsisting of possible string vectors .
Another feature map is : , withmot mot mot

the upstream count of occurrences of MOT , with MOT
an enumeration of 104 motifs (known binding sequences for
any TF in . Note that motif counting is aS cerevisiae)
standard way of identifying - binding and binding locations
for near . Another useful map is , an expressionexp
data profile for , i.e., a Boolean array indicating expression
or lack of expression of in a set of microarray experiments.

General feature maps: Consider a general map ,
with the (a vector space), andfeature space
x . If 1 is a classification
map, we may wish to assign the classification or
directly to the feature vector rather than its correspondingx
gene . Then, if is invertible, the compositionx

x x

accomplishes this, assigning a classification to each .x
In the example of the string feature space , mapsstr
a sequence of string counts in into yes ( ) or no ( 1) inx



. We replace the data with equivalent data
x xwith Given data (examples) ,

we seek to approximate the (unknown) exact classifier
function which correctly generalizes . For all
(test) feature vectors , this yields , with thex x
correct classification of The problem of determiningx
may be reformulated to seek , where

x x x xif if ;

for technical reasons it will be easier to work with
procedures which (equivalently) find such an instead.

We have used 26 feature maps (and kernels) in our yeast
studies. Table 1 contains a summary of them.

Table 1: List of feature maps used for s. Cerevisiae binding prediction. -
mer denotes a string of length [23]. MT and DG are calculated using the
EMBOSS1 toolbox. EMBOSS uses the nearest-neighbor thermodynamics
from [44], [12]. KMER: Background -mer (string of length ) counts in
the upstream region are calculated with RSA tools [53], [54]. Our method
for calculating related probabilities is similar to that described in [55].
HYD: a database of DNA sequences and their hydroxyl cleavage patterns
has been published [38]. This database allows accurate prediction of DNA
backbone accessibility for any sequence by sequentially examining every 3-
mer in a sequence and looking up its experimental cleavage intensity as
measured by phosphor imaging of cleaved, radio-labelled DNA separated
by electrophoresis [1]. BND, CRV: Using the Banana algorithm in the
EMBOSS [44], [12] toolkit, bend and curvature predictions were made for
all yeast promoters. Banana follows the method of [16] which is consistent
with experimental data [48].

We use SVM on training data to predict binding on test
data (fig. 5). Precisely, we encode the feature data

x x yinto a kernel function , representing an
imposed geometry on in which is thex x x x
inner product of its arguments (see §III).

Many of these data sets (each of which yields a different
feature map and kernel yield weak classifiers at best,
but they can combine using kernel methods to give better
predictions (§III). The figure below depicts predictive
accuracy for each kernel individually, and then the
combination of all kernels. Performances in terms of
sensitivity (dashed), positive predictive value (PPV, solid)
and F1 score (blue, the harmonic mean of sensitivity and
PPV) are given. The binding data are from [61], [20], [30],
[33].

Fig. 4: Predictive accuracies of the 26 kernels above using SVM to predict
binding of genes with a fixed TF (averaged over ). PPV is positive
predictive value, while 1 is the harmonic mean of PPV and sensitivity
(see [23]).

III. SVM LEARNING AND THE ERNEL TRICKK

Here is a brief overview of the SVM learning approach. The
SVM provides a discriminant function of the form
x w x x, with yielding the classification

(indicating binds ) and otherwisex
. The optimal can be found using quadraticw

programming, from which it is shown is a linearw x

combination of data. Thus

x x x

What about nonlinear separators ? In we have a set
x xof training vectors for which binding

is known As mentioned above, we can define a new
geometry on by replacing the standard dot product x y
with for an appropriate kernel . This changes thex y
separator



x x x

into a nonlinear one, allowing very general nonlinear
separating surfaces on . Again the are found using
linear algebra involving the kernel matrix .x x

An example of is the Gaussian kernel, for which

x x x
|x x

.

Software implementing this algorithm includes:

• SVMLight: http://svmlight.joachims.org
• SVMTorch: http://www.idiap.ch/learning/SVMTorch.html
• LIBSVM: http://wws.csie.ntu.edu.tw/~cjlin/libsvm

A Matlab package which implements most SVM algorithms
with a -based back end is SPIDER:
http://www.kyb.mpg.de/bs/people/spider/whatisit.html

The kernel trick: Kernel learning algorithms are equivalent
to RBF networks with particular choices of RBF functions.
There are three distinct reasons why these methods are useful
in biological and other applications. First, kernels allow us
to modify the geometry of our biological feature space.
Second, they allow us to work in the minimal dimension
necessary to deal with our data - a dimension far lower than
that of the biological feature space. Indeed, the kernel matrix

has the dimension of the data cardinality, which may be
far less than the dimension of . Finally kernelsx
incorporate a priori biological information (e.g., disparate
information sources mentioned in §I) and combine it in the
easiest possible way - concatenation of biological feature
spaces and is equivalent to summing the corresponding
kernels, yielding

In our case, the concatenation of the above 26 feature spaces
(datasets) is accomplished by taking a linear combination of
the 26 associated kernels (§II above).

IV. P I RBF OROBABILISTIC NTERPRETATION OF UTCOMES
AND PPLICATIONSA

Probabilistic approaches to SVM include a posterior
probabilistic SVM (PSVM), which gives -values
(confidences) for classifying genes using the correlated
parameter (the SVM score) Specificallyx w x
[41], the probability score has anx x
empirical distribution which can be used, though only if
(i.e. and ) is determined by a training set fullyw

independent of the separate training set determining .x
The result is an empirically based confidence level for SVM
predictions. This can be used to generalize from known
examples (by a factor of 10, for high-confidence genes) the
known binders to some human transcription factors, with
interesting implications, e.g., for biochemical pathways such
as carcinogenesis pathways (§V).

Running the algorithm: The overall structure of the
algorithm as it is run on yeast is:

Fig. 5 The SVM algorithm uses all 26 kernels in a weighted combination:
with cross-validation determining parameters. Care is taken to assure there
is no overfitting due to an excess of free weight parameters. The kernel
coefficients (below) are based on the score (harmonic mean of the
sensitivity and PPV) of the kernel; see [23].

We have studied a total of 163 TF's in yeast, using
combination kernels involving weighted sums of the 26
feature kernels (Table 1), and a final computational kernel
(fig. 5)

x y x y .

with determined by the score of kernel on its own.
More specifically, can be the scaled score, square of
the scaled score, or the squared tangent of the score
(see results in last 3 data points in Fig. 4). The latter
weightings emphasize higher and better values more.

To summarize the predictive values of the SVM
classifiers, the best single kernel has an overall (averaged
over 163 TF's) sensitivity of .71 and PPV of .82. The
squared-tan weighting gives a sensitivity of .73 and PPV of
.89.



Fig. 6: Pathway predictions for the yeast TF GCN4 based on SVM
predictions [23]

Fig. 6 includes new implications formed by the yeast binding
predictions applied to GCN4 biochemical pathways related
to amino acid biosynthesis.

V. P H GREDICTIONS FOR THE UMAN ENOME

Preliminary work using PSVM [41] modeling has been
applied to make target predictions for 163 human TFs. The
results are promising, with the top 33 TFs reaching a
combined predictive precision of better than 60%. All
predictions are available online ([22];
http://cagt10.bu.edu/TFSVM/Main%20Frame%20Page.htm).
We note that the applications of SVM to human genomes
described here use linear SVM kernels only. More details
will appear in [25].

Wt1 gene predictions and Wilms' tumor: WT1 is a TF
involved in Wilms' Tumor, making up 8% of childhood
cancers [29]. This can develop in numerous ways, including
loss of the WT1 producing gene (denoted , loss of otherWT1)
chromosomal loci, and gene duplication. SVM predictions
for WT1 allow us to suggest new Wilms tumor models.
Genes in significant loci include several oncogenes and
tumor suppressors which are candidates for involvement in
cancer progression and may partially explain the observed
clinical and biochemical data on this cancer. One example
of this can be seen in chromosomal region 11p15.5, which is
known to be involved in Wilms' Tumor. Newly predicted
targets for WT1 are statistically enriched ( 6.3 -5) for
genes falling in this region and three are possible tumor
suppressors, i.e., [14], [60], and [49].RNH1 IGF2AS CD151
Other regions known to play a role in Wilms' Tumor also
contain new target predictions (16q, 1p36.3, 16p13.3, 17q25,
and 4p16.3). The anti-apoptotic effects of WT1 are also
reviewed in [25] along with several new target genes,

including and , which may help mediate theBAX PDE4B
above effect. Finally, motif discovery is used to propose a
new binding motif for WT1 which will be useful in later site
identification. Fig. 7C below shows the top three motifs
reported by the Weeder motif discovery algorithm.

Fig. 7 - Wt1 target motifs: ( Suggested consensus binding sites from theA)
literature: references for known binding sites of WT1: GCGGGGGCG [43],
GNGNGGGNG [13], GNGNGGGNGNS [21], and GCGTGGGAGT [35].
( ) Rankings of candidate motif strings as determined by application ofB
SVM to a string feature space (see also §VII; see [54] for Oligo-str
analysis). RSAtools: [53] (C) Top ranked motifs using the Weeder
algorithm [25]. Logos obtained using [50].

VI. S K L LYNOPSIS ERNELS: EARNING ON EARNING

As mentioned in §III, kernel summation

corresponds to a direct sum (concatenation) of feature spaces

and so represents taking a union of all their

coordinates. Such coordinate concatenations may or may not
be effective. If data are sparse compared to their
dimensionality (as for string kernels), kernel addition and
coordinate concatenation may not be advisable, given
dimensionality will be further increased. For example, in the
case of addition of string and gapped string kernels (gapped
string feature maps count strings but ignore fixed size gaps in
them), the dimensionality of the feature space doubles from
approximately 5,000 to 10,000, giving a highly sparse space.
Any set of training data with size lower than this dimension
can be separated by some hyperplane, and overfitting is a
serious risk. It is better to initially reduce dimension of each
component kernel to a smaller relevant set of
coordinates, with cardinality smaller than the data if possible.

The so-called synopsis kernel can be used do this. Use
of this kernel gives much greater control of the coordinate
optimization process than does simple kernel addition and
coordinate concatenation. For each feature space , only
one dimension (the direction of the SVM classification
gradient ) is used in constructing the synopsis featurew
space, yielding a final feature space whose dimension equals
no more than the cardinality of different feature spaces
originally used. Thus the only coordinates the synopsis
SVM uses are projections onto the weight vectors w ,



one for each feature space . This reduces the analysis to
arguably the most sensitive -dimensional subspace (span of
w of the full feature space

The data below are given for the yeast TF GCN4, using
8 weak classifiers, none of which have an intrinsic accuracy
greater than 55%. These include phylogenetic profiling,
hydroxil cleaveage, and promoter bend prediction (fig. 8).

Fig. 8: 8 weak classifiers are chosen in a test of combining their synopsis
vectors.

The SVM is run on each of the eight kernels, producing a
gradient vector for each corresponding feature space .w
We then restrict our features to the dimensional subspace

of spanned by , and run the SVM on this. Inw

8 dimensions of course we can also form new nonlinear
coordinate combinations (there are 36 quadratic
combinations of these 8 coordinates) without risk of
overfitting.

Though the predictive error rates of each weak classifier
are greater than 45%, a strong synergy occurs among them
when their synopsis vectors are combined on the GCN4 data
set (this set has a total 211 positive gene examples, which are
split into training and test data). Using just the synopsis
vectors, we have the error rates:

l RBF kernel quad. kernel
Error rate .3784 .4324 .3986

inear kernel

From this we see dimensional reduction via synopsis
vectors can be a valuable error reduction tool, given the
unreduced error rate above of 45%. Here dimension has
been pruned to one per kernel, and naturally more single
dimensions can be added from the 26 feature spaces, based
on the right criteria. What are the criteria? One method
which shows promise combines optimizing discriminatory
ability with stochastic independence for the coordinates.
This can be done for each feature map by choosing a first
coordinate to be the objective function of the optimalx
SVM, and the next several coordinates based on a Gram-
Schmidt orthogonalization process, with inner product
determined by the empirical covariance matrix of the data
themselves.

VII. M FOTIF INDING

The above SVM learning methods can also be used for
identification of binding sites using the following approach.
This is illustrated briefly for humans in the identification of
WT1 binding sites in §V (Fig. 7). This strategy can be
organized into a motif-identification algorithm based on
identification of appropriate position weight matrices (PWM).

The idea is based on the fact that the SVM separates two
groups of data (positive and negative) in feature space. The
present algorithm uses the string space , by identifying thestr
largest components (each of which corresponds to a unique
string) of the gradient vector which differentiates bindersw
from non-binders in . These largest componentsstr are
identified and clustered into groups of overlapping sequences.
For each cluster, a representative PWM is be derived

The derivation of a probability weight matrix (PWM)
from a set of overlapping motifs (here for the TF GCN4) is
illustrated in fig 9 (here using strings obtained from using
other algorithms):

Fig 9: Known binding sites for the TF GCN4 in yeast, together with a
probability matrix and a consensus sequence logo [52], [18].

Thus for our SVM-based motif algorithm, we map gene into
str str (its upstream string count vector) and use SVM
in this case with a linear kernel function on to separatestr



from if is a binder and is a non-binder. For
GCN4 there are 211 positive examples and 177 (heuristically
selected) non-binders.

The pseudo-code is:

Let be the set of top strings in . Let be the current setw
of clusters (groups of similar strings in ).

Initial step: str1, str2, …. , ordered by significance
. is initially empty.

Step 0: Form a new string cluster consisting of str1.
Remove str1 from .

Step 1: If empty, then quit. Otherwise, pick out the
string currently in with highest weight.

Step 2: Compute overlap scores of the string from Step 1
with each of current clusters (represented by PWM) in . If
the highest score is greater than the adding threshold 1, go
to step 3 (addition). If the highest score is greater than the
new cluster threshold , go to step 4. Otherwise, go to step
5.

Step 3 (addition): Add string into the cluster producing the
highest score, and delete from . Let (defined
in step 5). Go to step 3'.

Step 3' (deletion): Examine each element in the cluster
being updated in step 3 by computing its score with respect
to the empirical PWM of this cluster. If the score is smaller
than the deleting threshold, move this string back into .

Step 4: Form a new cluster in consisting of string , and
delete string from . Let Go to step 1.

Step 5: Move string into the exception set . Go to step 1.
In a comparison of the SVM method to AlignACE [45] out
of 30 TF's chosen with more than 150 known binding genes
each, AlignACE discovered consensus motifs in 43% of
instances, while the SVM method was successful in 56% of
them In the table below are comparisons of several known
consensus sequences in S. cerevisiae, and the resulting motifs
using our kernel method, versus several other standard
methods (MDscan [32] and AlignACE [45] and MEME [2]).
The consensus sequences below are from [20].

TF Name Known consensus sequence AlignACE MDscan MEME SVM

REB1

RPN4 WTTTGCCACC ATTATT TTTGCCACCG TTTGCC

NCGGGTAAYR CGGGTAAT CCGGGTAAAG CGGGTAA

ACC

MBP1 RACGCGWA RACGCGTC RACGCGW CGAAACGCGT

YDR026C TTACCCGGMM TTTACCCGGC TTTACCCGGM ATTTACCCGG

GCN4 TGAGTCAT TGAGTCATCG TGAGTCA CTGAGTCATC

Fig. 10. Some s. Cerevisiae transcription factors, their consensus
sequences, and their predictions by several algorithms.
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