Homogeneous equations, Linear independence
1. Homogeneous equations:

Ex 1. Consider system:

Matrix equation:

Homogeneous equation:

AN
X
I

o

At least one solution:
x = 0.
Other solutions called nontrivial solutions.
Theorem 1: A nontrivial solution of (3) exists iff [if and only if] the system has

at least one free variable in row echelon form. The same is true for any
homogeneous system of equations.

Proof: If there are no free variables, there is only one solution and that
must be the trivial solution. Conversely, if there are free variables, then they can
be non-zero, and there is a nontrivial solution. [

Ex 2: Reduce the system above:

120|Oasbefore120|O
-1 0 =2 | ol °="lo 1 -1 ] 0
0 1 -1 | 0 00 0 | 0



T+ 2x9=0; x9—23=0; 0=0.

Note that 3 = free variable (non-pivot); hence general solution is

Lo = I3; 1 = —255‘2 = —25[:3.
1 —2333 —2
X=|lxy | = T3 = I3 1 ,
I3 I3 1

Parametric vector form of solution.

x3 arbitrary: straight line -

line of solutions

Theorem 2: A homogeneous system always has a nontrivial solution if the
number of equations is less than the number of unknowns.

Pf: If we perform a Gaussian elimination on the system, then the
reduced augmented matrix has the form:



I aip a3 | 0
0 0 1 a94 ... | 0
0 0 0 1 ass; ... |
0 0 0 0 O |

_ d

with the remaining rows zeroes on the left side. If the number of
equations is less than the number of unknowns, then not every column
can have a 1 in it, so there are free variables. By previous theorem,
there are nontrivial solutions. [



1. Inhomogeneous equations:

[we should briefly mention the relationship between homogeneous and
Inhomogeneous equations:]

Consider general system:
AXx = b. (1)

Suppose p is a particular solution of (1), so Ap = b. If x is any other solution of
(1), we still have Ax = b. Subtracting the two equations:

AX—Ap =0 = AX—p)=0.

So v, = x — p satisfies the homogeneous equation. Generally:

Theorem 1: If p is a particular solution of (1), then for any other solution x,
we have that v, = X — p solves the homogeneous equation (i.e., with b = 0).
Thus every solution x of (1) can be written X = p + v;, where v, is a solution of
the homogeneous equation.

2. Application: Network flows

Traffic pattern at Drummond Square:



200

40

100

Quantities in cars/min. What are the flows on the inside streets? One equation
for each node:

T1 — T3 — T4 =40
—xX1 — X9 = —200

$2+$3—$5:100

Tyt x5 = 60
1 0 -1 -1 0 | 40
-1 -1 0 0 0 | =200
0o 1 1 0 -1 | 100
0 0 0 1 1 | 60



1 0 -1 —1 0 | 40
0 -1 -1 -1 0 | -160
O 1 1 0 -1 | 100
o 0 0 1 1 | 60
1 0 -1 -1 0 | 40
01 1 1 0 | 160
01 1 0 -1 | 100
00 0 1 1 | 60
1 0 -1 -1 0 | 40
01 1 1 0 | 160
00 0 -1 —1 | —60
00 0 1 1 | 60
(1 0 -1 -1 0 | 40]
01 1 1 0 | 160
00 0 1 1 | 60
00 0 1 1 | 60
(1 0 -1 0 1 | 100]
01 1 0 —1 | 100
00 0O 1 1 | 60
00 0 0 0 | 0

So:
I = 100+£E3—£E5

$2:100—$3—|—$5

Ty = 60 — x5,

where x3, x5 are free.



Constraint: if for example all flows have to be positive; then we require z; > 0
for all 7. Therefore:

x3, x5 > 0
—100 < x3 — x5 < 100
Ty < 60
This corresponds to a region in the x3, x5 plane - can be plotted if desired.

If they closed off road =3 and x5, then we have 3 = x5 = 0, so that
Ir1 = 100, Lo — 100, Ty = 60
note that then traffic flow becomes uniquely determined.
Definition 1:
A collection of vectors vi,Vs,...,V, is linearly independent if no
vector in the collection is a linear combination of the others.

Equivalently,

Definition 2: A collection of vectors vi,...,V, is linearly independent if the
only way we can have c¢iVvq + Ve + ... +¢,v, =0 isifall ofthe ¢; = 0.

Equivalence of the definitions:
Def1l = Def?2

If no vector is a linear combination of the others, then if
Vi + Vo + ... +¢,v, =0
we will show that ¢q,...,¢, havealsotobe O.

Proof: Suppose not (for contradiction). Without loss of generality,
assume c¢; # 0 (proof works same way otherwise). Then we have:

Vi = —CQ/Cl Vo — ... —Cn/Cl Vi,



contradicting that no vector is a combination of the others. Thus the ¢;
all have to be 0 as desired. [J

Note: If Sy isa collection of vectors and S; is a subcollection of S,, then
If S5 is linearly independent
= no vector in Sy is a linear combination of the others

=- no vector in S; is a linear combination of the others (since every
vector in S; isalso in Sy)

= 57 is linearly independent.

Logically equivalent [contrapositive]

If Sy islinearly dependent (i.e., not independent)

= Sy is linearly dependent

[These are stated more formally in the book as theorems.]

Theorem 2:  Let S = {vi,...,Vv,} be acollection of vectors in R?. Then S
Is linearly dependent if and only if one of the vectors v; is a linear combination
of the previous ones vq,...,V; 1.

Proof: (=) If S is linearly dependent, then there is a set of constnats ¢; not all
0 such that

Vi + ... + ¢V, =0.

Let ¢. be the last non-zero coefficient. Then the rest of the coefficients are
zero, and

Vi +caVo + ..o+ 1Vp—1 + Ve =0

— Vi, = —Cl/Ckvl—Cg/CkVQ_... —Ck_1/Cka;—1

I.e. one of the vectors is a linear combination of the previous ones.
(<) Obvious.



3. Checking for linear independence:
Example 2:  Consider the vectors

.

Are they linearly independent?

Vi +caVe +c3v3 = 0

Cl-I-CQ—Cg:O

CiT — C =0

Reduced matrix:

frro-1 oo
01 —1/2 | 0
Conclude: there are free variables. By theorem on homogeneous
equations there is a nontrivial solution, so ¢; need not be 0.

Thus notall ¢; mustbe 0 = not linearly independent.

[note that if number of vectors is greater than the size of the vectors,
this will always happen].

More generally thus:



Theorem 3: In R", if we have more than n vectors, they cannot be
linearly independent.

From above we have:

Algorithm: To check whether vectors are linearly independent, form a matrix
with them as columns, and row reduce.
(a) If reduced matrix has free variables (i.e., 3 a non-pivot column), then
they are not independent.
(b) If there are no free variables (i.e., there are no nonpivot columns), they
are independent.



