Homogeneous equations, Linear independence

1. Homogeneous equations:

Ex 1: Consider system:

Matrix equation:

$$\begin{bmatrix} 1 & 2 & 0 \\ -1 & 0 & -2 \\ 0 & 1 & -1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} = \mathbf{0}.$$
 (3)

Homogeneous equation:

$$A\mathbf{x} = \mathbf{0}$$

At least one solution:

 $\mathbf{x} = \mathbf{0}$.

Other solutions called *nontrivial* solutions.

Theorem 1: A nontrivial solution of (3) exists iff [if and only if] the system has at least one free variable in row echelon form. The same is true for any homogeneous system of equations.

Proof: If there are no free variables, there is only one solution and that must be the trivial solution. Conversely, if there are free variables, then they can be non-zero, and there is a nontrivial solution. \Box

Ex 2: Reduce the system above:

$$\begin{bmatrix} 1 & 2 & 0 & | & 0 \\ -1 & 0 & -2 & | & 0 \\ 0 & 1 & -1 & | & 0 \end{bmatrix} \xrightarrow{\text{as before}} \begin{bmatrix} 1 & 2 & 0 & | & 0 \\ 0 & 1 & -1 & | & 0 \\ 0 & 0 & 0 & | & 0 \end{bmatrix}$$

$$x_1 + 2x_2 = 0; \quad x_2 - x_3 = 0; \quad 0 = 0.$$

Note that x_3 = free variable (non-pivot); hence general solution is

$$x_{2} = x_{3}; \qquad x_{1} = -2x_{2} = -2x_{3}.$$
$$\mathbf{x} = \begin{bmatrix} x_{1} \\ x_{2} \\ x_{3} \end{bmatrix} = \begin{bmatrix} -2x_{3} \\ x_{3} \\ x_{3} \end{bmatrix} = x_{3} \begin{bmatrix} -2 \\ 1 \\ 1 \end{bmatrix},$$

Parametric vector form of solution.

 x_3 arbitrary: straight line -

Theorem 2: A homogeneous system always has a nontrivial solution if the number of equations is less than the number of unknowns.

Pf: If we perform a Gaussian elimination on the system, then the reduced augmented matrix has the form:

 \Rightarrow

[1	a_{12}	a_{13}	•••				0]
0	0	1	a_{24}	•••		Ì	0
0	0	0	1	a_{35}	•••	Ì	:
0	0	0	0	0	•••	Ì	:
		:					0

with the remaining rows zeroes on the left side. If the number of equations is less than the number of unknowns, then not every column can have a 1 in it, so there are free variables. By previous theorem, there are nontrivial solutions. \Box

1. Inhomogeneous equations:

[we should briefly mention the relationship between homogeneous and inhomogeneous equations:]

Consider general system:

$$A\mathbf{x} = \mathbf{b}.$$
 (1)

Suppose **p** is a particular solution of (1), so $A\mathbf{p} = \mathbf{b}$. If **x** is any other solution of (1), we still have $A\mathbf{x} = \mathbf{b}$. Subtracting the two equations:

$$A\mathbf{x} - A\mathbf{p} = \mathbf{0} \qquad \Rightarrow \qquad A(\mathbf{x} - \mathbf{p}) = \mathbf{0}.$$

So $\mathbf{v}_h = \mathbf{x} - \mathbf{p}$ satisfies the homogeneous equation. Generally:

Theorem 1: If **p** is a particular solution of (1), then for any other solution **x**, we have that $\mathbf{v}_h = \mathbf{x} - \mathbf{p}$ solves the homogeneous equation (i.e., with $\mathbf{b} = \mathbf{0}$). Thus every solution **x** of (1) can be written $\mathbf{x} = \mathbf{p} + \mathbf{v}_h$, where \mathbf{v}_h is a solution of the homogeneous equation.

2. Application: Network flows

Traffic pattern at Drummond Square:

Quantities in cars/min. What are the flows on the inside streets? One equation for each node:

 $x_{1} - x_{3} - x_{4} = 40$ $-x_{1} - x_{2} = -200$ $x_{2} + x_{3} - x_{5} = 100$ $x_{4} + x_{5} = 60$ $\begin{bmatrix} 1 & 0 & -1 & -1 & 0 & | & 40 \\ -1 & -1 & 0 & 0 & 0 & | & -200 \\ 0 & 1 & 1 & 0 & -1 & | & 100 \\ 0 & 0 & 0 & 1 & 1 & | & 60 \end{bmatrix}$

$\begin{bmatrix} 1\\ 0\\ 0\\ 0\\ 0 \end{bmatrix}$	$0 \\ -1 \\ 1 \\ 0$	$-1 \\ -1 \\ 1 \\ 0$	$-1\\-1\\0\\1$	$egin{array}{c} 0 \\ 0 \\ -1 \\ 1 \end{array}$	$\begin{array}{c} 40 \\ -160 \\ 100 \\ 60 \end{array}$
$\begin{bmatrix} 1\\0\\0\\0 \end{bmatrix}$	$egin{array}{c} 0 \ 1 \ 1 \ 0 \end{array}$	$-1 \\ 1 \\ 1 \\ 0$	$\begin{array}{c} -1 \\ 1 \\ 0 \\ 1 \end{array}$	${0 \\ 0 \\ -1 \\ 1}$	$\begin{array}{c} 40\\160\\100\\60\end{array}\right]$
$\begin{bmatrix} 1\\0\\0\\0 \end{bmatrix}$	0 1 0 0	$-1 \\ 1 \\ 0 \\ 0$	$-1 \\ 1 \\ -1 \\ 1$	${0 \\ 0 \\ -1 \\ 1}$	$\begin{array}{c} 40\\ 160\\ -60\\ 60 \end{array} \right]$
	1 0 0 1 0 0 0 0	$\begin{array}{c} -1 \\ 1 \\ 0 \\ 0 \end{array}$	$-1 \\ 1 \\ 1 \\ 1 \\ 1$	$egin{array}{c} 0 \\ 0 \\ 1 \\ 1 \end{array}$	$\begin{bmatrix} 40\\160\\60\\60 \end{bmatrix}$
	1 0 0 1 0 0 0 0	$\begin{array}{c} -1 \\ 1 \\ 0 \\ 0 \end{array}$	0 0 1 0	$egin{array}{c} 1 \\ -1 \\ 1 \\ 0 \end{array}$	$\begin{bmatrix} 100\\ 100\\ 60\\ 0 \end{bmatrix}$

So:

$$egin{aligned} x_1 &= 100 + x_3 - x_5 \ x_2 &= 100 - x_3 + x_5 \ x_4 &= 60 - x_5, \end{aligned}$$

where x_3 , x_5 are free.

Constraint: if for example all flows have to be positive; then we require $x_i \ge 0$ for all *i*. Therefore:

$$x_3, x_5 \ge 0$$

 $-100 \le x_3 - x_5 \le 100$
 $x_5 \le 60$

This corresponds to a region in the x_3, x_5 plane - can be plotted if desired.

If they closed off road x_3 and x_5 , then we have $x_3 = x_5 = 0$, so that

 $x_1 = 100, x_2 = 100, x_4 = 60$

note that then traffic flow becomes uniquely determined.

Definition 1:

A collection of vectors $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n$ is *linearly independent* if no vector in the collection is a linear combination of the others.

Equivalently,

Definition 2: A collection of vectors $\mathbf{v}_1, \ldots, \mathbf{v}_n$ is *linearly independent* if the only way we can have $c_1\mathbf{v}_1 + c_2\mathbf{v}_2 + \ldots + c_n\mathbf{v}_n = \mathbf{0}$ is if all of the $c_i = 0$.

Equivalence of the definitions:

 $Def 1 \Rightarrow Def 2$

If no vector is a linear combination of the others, then if

$$c_1\mathbf{v}_1 + c_2\mathbf{v}_2 + \ldots + c_n\mathbf{v}_n = \mathbf{0}$$

we will show that c_1, \ldots, c_n have also to be **0**.

Proof: Suppose not (for contradiction). Without loss of generality, assume $c_1 \neq 0$ (proof works same way otherwise). Then we have:

$$\mathbf{v}_1 = -c_2/c_1 \, \mathbf{v}_2 - \ldots - c_n/c_1 \, \mathbf{v}_n \,,$$

contradicting that no vector is a combination of the others. Thus the c_i all have to be 0 as desired. \Box

Note: If S_2 is a collection of vectors and S_1 is a subcollection of S_2 , then

If S_2 is linearly independent

 \Rightarrow no vector in S_2 is a linear combination of the others

 \Rightarrow no vector in S_1 is a linear combination of the others (since every vector in S_1 is also in S_2)

 \Rightarrow S₁ is linearly independent.

Logically equivalent [contrapositive]

If S_1 is linearly dependent (i.e., not independent)

 \Rightarrow S_2 is linearly dependent

[These are stated more formally in the book as theorems.]

Theorem 2: Let $S = {\mathbf{v}_1, ..., \mathbf{v}_n}$ be a collection of vectors in \mathbb{R}^d . Then S is linearly dependent if and only if one of the vectors \mathbf{v}_i is a linear combination of the previous ones $\mathbf{v}_1, ..., \mathbf{v}_{i-1}$.

Proof: (\Rightarrow) If S is linearly dependent, then there is a set of constnats c_i not all 0 such that

$$c_1\mathbf{v}_1+\ldots+c_n\mathbf{v}_n=\mathbf{0}.$$

Let c_k be the last non-zero coefficient. Then the rest of the coefficients are zero, and

$$c_1 \mathbf{v}_1 + c_2 \mathbf{v}_2 + \dots + c_{k-1} \mathbf{v}_{k-1} + c_k \mathbf{v}_k = \mathbf{0}$$

$$\rightarrow \mathbf{v}_k = -c_1/c_k \mathbf{v}_1 - c_2/c_k \mathbf{v}_2 - \dots - c_{k-1}/c_k \mathbf{v}_{k-1}$$

i.e. one of the vectors is a linear combination of the previous ones. (\Leftarrow) Obvious.

3. Checking for linear independence:

Example 2: Consider the vectors

$$\mathbf{v}_1 = \begin{bmatrix} 1 \\ 1 \end{bmatrix}, \ \mathbf{v}_2 = \begin{bmatrix} 1 \\ -1 \end{bmatrix}, \ \mathbf{v}_3 = \begin{bmatrix} -1 \\ 0 \end{bmatrix}$$

Are they linearly independent?

$$c_1\mathbf{v}_1+c_2\mathbf{v}_2+c_3\mathbf{v}_3 = \mathbf{0}$$

⇒

$$c_1 + c_2 - c_3 = 0$$

 $c_1 - c_2 = 0$

Reduced matrix:

$$\begin{bmatrix} 1 & 1 & -1 & | & 0 \\ 1 & -1 & 0 & | & 0 \end{bmatrix}$$
$$\rightarrow \begin{bmatrix} 1 & 1 & -1 & | & 0 \\ 0 & -2 & 1 & | & 0 \end{bmatrix}$$
$$\rightarrow \begin{bmatrix} 1 & 1 & -1 & | & 0 \\ 0 & 1 & -1/2 & | & 0 \end{bmatrix}$$

Conclude: there are free variables. By theorem on homogeneous equations there is a nontrivial solution, so c_i need not be 0.

Thus not all c_i must be $0 \Rightarrow$ not linearly independent.

[note that if number of vectors is greater than the size of the vectors, this will always happen].

More generally thus:

Theorem 3: In \mathbb{R}^n , if we have more than *n* vectors, they cannot be linearly independent.

From above we have:

Algorithm: To check whether vectors are linearly independent, form a matrix with them as columns, and row reduce.

(a) If reduced matrix has free variables (i.e., ∃ a non-pivot column), then they are not independent.

(b) If there are no free variables (i.e., there are no nonpivot columns), they are independent.