Homogeneous equations, Linear independence

1. Homogeneous equations:

Ex 1: Consider system:

$$
\begin{array}{ccr}
x_{1} & +2 x_{2} & =0 \\
-x_{1} & & -2 x_{3}=0 \\
& x_{2} & -x_{3}=0
\end{array}
$$

Matrix equation:

$$
\left[\begin{array}{ccc}
1 & 2 & 0 \tag{3}\\
-1 & 0 & -2 \\
0 & 1 & -1
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]=\mathbf{0}
$$

Homogeneous equation:

$$
A \mathbf{x}=\mathbf{0} .
$$

At least one solution:

$$
\mathbf{x}=\mathbf{0} .
$$

Other solutions called nontrivial solutions.
Theorem 1: A nontrivial solution of (3) exists iff [if and only if] the system has at least one free variable in row echelon form. The same is true for any homogeneous system of equations.

Proof: If there are no free variables, there is only one solution and that must be the trivial solution. Conversely, if there are free variables, then they can be non-zero, and there is a nontrivial solution.

Ex 2: Reduce the system above:

$$
\left[\begin{array}{ccc|c}
1 & 2 & 0 & 0 \\
-1 & 0 & -2 & 0 \\
0 & 1 & -1 & 0
\end{array}\right] \stackrel{\text { as before }}{\rightarrow}\left[\begin{array}{ccc|c}
1 & 2 & 0 & 0 \\
0 & 1 & -1 & 0 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

$$
\begin{aligned}
& \Rightarrow \\
& \qquad x_{1}+2 x_{2}=0 ; \quad x_{2}-x_{3}=0 ; \quad 0=0 .
\end{aligned}
$$

Note that $x_{3}=$ free variable (non-pivot); hence general solution is

$$
\begin{gathered}
x_{2}=x_{3} ; \quad x_{1}=-2 x_{2}=-2 x_{3} . \\
\mathbf{x}=\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{c}
-2 x_{3} \\
x_{3} \\
x_{3}
\end{array}\right]=x_{3}\left[\begin{array}{c}
-2 \\
1 \\
1
\end{array}\right],
\end{gathered}
$$

Parametric vector form of solution.
x_{3} arbitrary: straight line -

Theorem 2: A homogeneous system always has a nontrivial solution if the number of equations is less than the number of unknowns.

Pf: If we perform a Gaussian elimination on the system, then the reduced augmented matrix has the form:

$$
\left[\begin{array}{cccccc:c}
1 & a_{12} & a_{13} & \ldots & & & 0 \\
0 & 0 & 1 & a_{24} & \ldots & & 0 \\
0 & 0 & 0 & 1 & a_{35} & \ldots & \vdots \\
0 & 0 & 0 & 0 & 0 & \ldots & \vdots \\
& & \vdots & & & & 0
\end{array}\right]
$$

with the remaining rows zeroes on the left side. If the number of equations is less than the number of unknowns, then not every column can have a 1 in it, so there are free variables. By previous theorem, there are nontrivial solutions.

1. Inhomogeneous equations:

[we should briefly mention the relationship between homogeneous and inhomogeneous equations:]

Consider general system:

$$
\begin{equation*}
A \mathbf{x}=\mathbf{b} \tag{1}
\end{equation*}
$$

Suppose \mathbf{p} is a particular solution of (1), so $A \mathbf{p}=\mathbf{b}$. If \mathbf{x} is any other solution of (1), we still have $A \mathbf{x}=\mathbf{b}$. Subtracting the two equations:

$$
A \mathbf{x}-A \mathbf{p}=\mathbf{0} \quad \Rightarrow \quad A(\mathbf{x}-\mathbf{p})=\mathbf{0}
$$

So $\mathbf{v}_{h}=\mathbf{x}-\mathbf{p}$ satisfies the homogeneous equation. Generally:
Theorem 1: If \mathbf{p} is a particular solution of (1), then for any other solution \mathbf{x}, we have that $\mathbf{v}_{h}=\mathbf{x}-\mathbf{p}$ solves the homogeneous equation (i.e., with $\mathbf{b}=\mathbf{0}$). Thus every solution \mathbf{x} of (1) can be written $\mathbf{x}=\mathbf{p}+\mathbf{v}_{h}$, where \mathbf{v}_{h} is a solution of the homogeneous equation.
2. Application: Network flows

Traffic pattern at Drummond Square:

Quantities in cars $/ \mathrm{min}$. What are the flows on the inside streets? One equation for each node:

$$
\begin{gathered}
x_{1}-x_{3}-x_{4}=40 \\
-x_{1}-x_{2}=-200 \\
x_{2}+x_{3}-x_{5}=100 \\
x_{4}+x_{5}=60 \\
{\left[\begin{array}{ccccc:c}
1 & 0 & -1 & -1 & 0 & 40 \\
-1 & -1 & 0 & 0 & 0 & -200 \\
0 & 1 & 1 & 0 & -1 & 100 \\
0 & 0 & 0 & 1 & 1 & 60
\end{array}\right]}
\end{gathered}
$$

$$
\begin{aligned}
& {\left[\begin{array}{ccccc:c}
1 & 0 & -1 & -1 & 0 & 40 \\
0 & -1 & -1 & -1 & 0 & -160 \\
0 & 1 & 1 & 0 & -1 & 100 \\
0 & 0 & 0 & 1 & 1 & 60
\end{array}\right]} \\
& {\left[\begin{array}{ccccc:c}
1 & 0 & -1 & -1 & 0 & 40 \\
0 & 1 & 1 & 1 & 0 & 160 \\
0 & 1 & 1 & 0 & -1 & 100 \\
0 & 0 & 0 & 1 & 1 & 60
\end{array}\right]} \\
& {\left[\begin{array}{ccccc:c}
1 & 0 & -1 & -1 & 0 & 40 \\
0 & 1 & 1 & 1 & 0 & 160 \\
0 & 0 & 0 & -1 & -1 & -60 \\
0 & 0 & 0 & 1 & 1 & 60
\end{array}\right]} \\
& {\left[\begin{array}{llllll}
1 & 0 & -1 & -1 & 0 & 40 \\
0 & 1 & 1 & 1 & 0 & 160 \\
0 & 0 & 0 & 1 & 1 & 60 \\
0 & 0 & 0 & 1 & 1 & 60
\end{array}\right]} \\
& {\left[\begin{array}{llllll|}
1 & 0 & -1 & 0 & 1 & 100 \\
0 & 1 & 1 & 0 & -1 & 100 \\
0 & 0 & 0 & 1 & 1 & 60 \\
0 & 0 & 0 & 0 & 0 & 0
\end{array}\right]}
\end{aligned}
$$

So:

$$
\begin{gathered}
x_{1}=100+x_{3}-x_{5} \\
x_{2}=100-x_{3}+x_{5} \\
x_{4}=60-x_{5},
\end{gathered}
$$

where x_{3}, x_{5} are free.

Constraint: if for example all flows have to be positive; then we require $x_{i} \geq 0$ for all i. Therefore:

$$
\begin{gathered}
x_{3}, x_{5} \geq 0 \\
-100 \leq x_{3}-x_{5} \leq 100 \\
x_{5} \leq 60
\end{gathered}
$$

This corresponds to a region in the x_{3}, x_{5} plane - can be plotted if desired.
If they closed off road x_{3} and x_{5}, then we have $x_{3}=x_{5}=0$, so that

$$
x_{1}=100, x_{2}=100, x_{4}=60
$$

note that then traffic flow becomes uniquely determined.

Definition 1:

A collection of vectors $\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{n}$ is linearly independent if no vector in the collection is a linear combination of the others.

Equivalently,

Definition 2: A collection of vectors $\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}$ is linearly independent if the only way we can have $c_{1} \mathbf{v}_{1}+c_{2} \mathbf{v}_{2}+\ldots+c_{n} \mathbf{v}_{n}=\mathbf{0}$ is if all of the $c_{i}=0$.

Equivalence of the definitions:

Def $1 \Rightarrow$ Def 2
If no vector is a linear combination of the others, then if

$$
c_{1} \mathbf{v}_{1}+c_{2} \mathbf{v}_{2}+\ldots+c_{n} \mathbf{v}_{n}=\mathbf{0}
$$

we will show that c_{1}, \ldots, c_{n} have also to be $\mathbf{0}$.
Proof: Suppose not (for contradiction). Without loss of generality, assume $c_{1} \neq 0$ (proof works same way otherwise). Then we have:

$$
\mathbf{v}_{1}=-c_{2} / c_{1} \mathbf{v}_{2}-\ldots-c_{n} / c_{1} \mathbf{v}_{n}
$$

contradicting that no vector is a combination of the others. Thus the c_{i} all have to be 0 as desired.

Note: If S_{2} is a collection of vectors and S_{1} is a subcollection of S_{2}, then If S_{2} is linearly independent
\Rightarrow no vector in S_{2} is a linear combination of the others
\Rightarrow no vector in S_{1} is a linear combination of the others (since every vector in S_{1} is also in S_{2})
$\Rightarrow \quad S_{1}$ is linearly independent.
Logically equivalent [contrapositive]
If S_{1} is linearly dependent (i.e., not independent)
$\Rightarrow \quad S_{2}$ is linearly dependent
[These are stated more formally in the book as theorems.]
Theorem 2: Let $S=\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}\right\}$ be a collection of vectors in \mathbb{R}^{d}. Then S is linearly dependent if and only if one of the vectors \mathbf{v}_{i} is a linear combination of the previous ones $\mathbf{v}_{1}, \ldots, \mathbf{v}_{i-1}$.

Proof: (\Rightarrow) If S is linearly dependent, then there is a set of constnats c_{i} not all 0 such that

$$
c_{1} \mathbf{v}_{1}+\ldots+c_{n} \mathbf{v}_{n}=\mathbf{0} .
$$

Let c_{k} be the last non-zero coefficient. Then the rest of the coefficients are zero, and

$$
\begin{aligned}
& c_{1} \mathbf{v}_{1}+c_{2} \mathbf{v}_{2}+\ldots+c_{k-1} \mathbf{v}_{k-1}+c_{k} \mathbf{v}_{k}=\mathbf{0} \\
& \rightarrow \quad \mathbf{v}_{k}=-c_{1} / c_{k} \mathbf{v}_{1}-c_{2} / c_{k} \mathbf{v}_{2}-\ldots-c_{k-1} / c_{k} \mathbf{v}_{k-1}
\end{aligned}
$$

i.e. one of the vectors is a linear combination of the previous ones.
(\Leftarrow) Obvious.
3. Checking for linear independence:

Example 2: Consider the vectors

$$
\mathbf{v}_{1}=\left[\begin{array}{l}
1 \\
1
\end{array}\right], \quad \mathbf{v}_{2}=\left[\begin{array}{c}
1 \\
-1
\end{array}\right], \quad \mathbf{v}_{3}=\left[\begin{array}{c}
-1 \\
0
\end{array}\right]
$$

Are they linearly independent?

$$
\Rightarrow \quad \begin{array}{r}
c_{1} \mathbf{v}_{1}+c_{2} \mathbf{v}_{2}+c_{3} \mathbf{v}_{3}=\mathbf{0} \\
c_{1}+c_{2}-c_{3}=0 \\
c_{1}-c_{2}=0
\end{array}
$$

Reduced matrix:

$$
\begin{aligned}
& {\left[\begin{array}{ccc|c}
1 & 1 & -1 & 0 \\
1 & -1 & 0 & 0
\end{array}\right]} \\
& \rightarrow\left[\begin{array}{ccc|c}
1 & 1 & -1 & 0 \\
0 & -2 & 1 & 0
\end{array}\right] \\
& \rightarrow\left[\begin{array}{ccc|c}
1 & 1 & -1 & 0 \\
0 & 1 & -1 / 2 & 0
\end{array}\right]
\end{aligned}
$$

Conclude: there are free variables. By theorem on homogeneous equations there is a nontrivial solution, so c_{i} need not be 0 .

Thus not all c_{i} must be $0 \Rightarrow$ not linearly independent.
[note that if number of vectors is greater than the size of the vectors, this will always happen].

More generally thus:

Theorem 3: In \mathbb{R}^{n}, if we have more than n vectors, they cannot be linearly independent.

From above we have:

Algorithm: To check whether vectors are linearly independent, form a matrix with them as columns, and row reduce.
(a) If reduced matrix has free variables (i.e., \exists a non-pivot column), then they are not independent.
(b) If there are no free variables (i.e., there are no nonpivot columns), they are independent.

