# 11Basics of Wavelets

References: I. Daubechies (Ten Lectures on Wavelets; Orthonormal Bases of Compactly Supported Wavelets)

Also: Y. Meyer, S. Mallat

Outline:

1. Need for time-frequency localization

2. Orthonormal wavelet bases: examples

3. Meyer wavelet

# 4. Orthonormal wavelets and multiresolution analysis



Interested in "frequency content" of signal, locally in time. E.G., what is the frequency content in the interval [.5, .6]?

Standard techniques: write in Fourier series as sum of sines and cosines: given function defined on [-L, L] as above:

$$f(x) =$$
  
 $\frac{1}{2}a_0 + \sum_{n=1}^{\infty} a_n \cos nx(\pi/L) + b_n \sin nx(\pi/L)$ 

 $(a_{n,} b_{n} \text{ constants})$ 

$$a_n = \frac{1}{L} \int_{-L}^{L} dx f(x) \cos nx(\pi/L)$$

$$b_n = \frac{1}{L} \int_{-L}^{L} dx f(x) \sin nx \left( \frac{\pi}{L} \right)$$

(generally f is complex-valued and  $a_n, b_n$  are complex numbers).

## THEORY OF FOURIER SERIES

Consider function f(x) defined on [-L, L].

Let  $L^{2}[-L, L] =$  square integrable functions =  $\left\{ f: [-L, L] \rightarrow \mathbb{C} \mid \int_{-L}^{L} dx |f^{2}(x)| < \infty \right\}$ 

where  $\mathbb{C} = \text{complex numbers.}$  Then  $L^2$  forms a Hilbert space.

Basis for Hilbert space:

$$\left\{\frac{1}{\sqrt{L}}\cos nx(\pi/L), \ \frac{1}{\sqrt{L}}\sin nx(\pi/L)\right\}_{N=1}^{\infty}$$

(together with the constant function  $1/\sqrt{2L}$ ).

These vectors form an orthonormal basis for  $L^2$  (constants  $1/\sqrt{L}$  give length 1).

# 2. Complex form of Fourier series (see previous lecture):

Equivalent representation:

Can use Euler's formula  $e^{ib} = \cos b + i \sin b$ . Can show similarly that the family

is orthonormal basis for  $L^2$  .

# Function f(x) can be written $f(x) = \sum_{n=-\infty}^{\infty} c_n \phi_n(x)$

where

$$c_n = ig\langle \phi_{n,} f ig
angle = \int_{-L}^{L} dx \, \overline{\phi_n(x)} f(x),$$

.

#### and

$$\phi_n(x) = n^{th}$$
 basis element  $= \frac{1}{\sqrt{2L}} e^{inx(\pi/L)}$ 

## 3. FOURIER TRANSFORM

Fourier transform is "Fourier series" on entire line  $(-\infty,\infty)$ : Start with function f(x) on (-L,L):



$$f(x) = \sum_{n=-\infty}^{\infty} c_n \phi_n(x) = \sum_{n=-\infty}^{\infty} c_n e^{inx(\pi/L)} / \sqrt{2L}$$

Let  $\xi_n = n\pi/L$ ; let  $\Delta \xi = \pi/L$ ;

let 
$$c(\xi_n) = c_n \sqrt{2\pi} / \left(\sqrt{2L} \Delta \xi\right).$$

### Then:

$$f(x) = \sum_{n=-\infty}^{\infty} c_n e^{inx(\pi/L)} / \sqrt{2L}$$
  
$$= \sum_{n=-\infty}^{\infty} (c_n / \sqrt{2L}) e^{ix\xi_n}$$
  
$$= \sum_{n=-\infty}^{\infty} c_n / (\sqrt{2L}\Delta\xi) e^{ix\xi_n}\Delta\xi.$$
  
$$= \frac{1}{\sqrt{2\pi}} \sum_{n=-\infty}^{\infty} c_n \sqrt{2\pi} / (\sqrt{2L}\Delta\xi) e^{ix\xi_n}\Delta\xi.$$
  
$$= \frac{1}{\sqrt{2\pi}} \sum_{n=-\infty}^{\infty} c(\xi_n) e^{ix\xi_n}\Delta\xi.$$
  
294

### Note as $L \to \infty$ , we have $\Delta \xi \to 0$ , and

$$c(\xi_n) = c_n \sqrt{2\pi} / \left(\sqrt{2L}\Delta\xi\right)$$
  
=  $\int_{-L}^{L} dx f(x) \overline{\phi_n(x)} \cdot \sqrt{2\pi} / \left(\sqrt{2L}\Delta\xi\right)$   
=  $\int_{-L}^{L} dx f(x) \frac{\sqrt{2\pi}}{2L\Delta\xi} e^{-inx(\pi/L)}$   
=  $\int_{-L}^{L} dx f(x) \frac{\sqrt{2\pi}}{2L(\pi/L)} e^{-inx(\pi/L)}$   
=  $\frac{1}{\sqrt{2\pi}} \int_{-L}^{L} dx f(x) e^{-ix\xi_n}$ .

# Now (informally) take the limit $L \to \infty$ . The interval becomes

$$[-L,L] \rightarrow (-\infty,\infty).$$

We have

$$f(x) = rac{1}{\sqrt{2\pi}} \quad \sum_{n=-\infty}^{\infty} c(\xi_n) \, e^{i x \xi_n} \Delta \xi$$

fundamental thm. calculus 
$$\frac{1}{L \to \infty} \int_{-\infty}^{\infty} c(\xi) e^{ix\xi} d\xi$$

# [note this is like Riemann sum of calculus, which turns into integral].

Finally, from above

$$c(\xi) = rac{1}{\sqrt{2\pi}} \int_{-L}^{L} dx \, f(x) \, e^{-ix\xi}$$

$$L \xrightarrow{\longrightarrow} \infty \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} dx f(x) e^{-ix\xi}.$$

# Thus, the informal arguments give that in the limit, we can write

$$f(x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} c(\xi) e^{ix\xi} d\xi,$$

where  $c(\xi)$  (called *Fourier transform* of f ) is

$$c(\xi) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} dx f(x) \ e^{ix\xi}$$

(like Fourier series with sums replaced by integrals over the real line).

Note: can prove that writing f(x) in the above integral form works for arbitrary  $f \in L^2(-\infty,\infty)$ .

#### 4. FREQUENCY CONTENT AND GIBBS PHENOMENON

For now work with Fourier series on  $\mathbb{R}$ . If f(x) discontinuous at x = 0, e.g. if  $f(x) = \frac{|x|}{x}$ :



# first few partial sums of Fourier series are: 5 terms of FS:



10 terms:



#### 20 terms:



#### 40 terms:



Note there are larger errors appearing near "singularity" (discontinuity).

Specifically: "overshoot" of about 9% of the jump near singularity no matter how many terms we take!

In general, singularities (discontinuities in f(x) or derivatives) cause high frequency components so that FS

$$f(x) = \sum_{n = -\infty}^{\infty} c_n \, e^{inx} / \sqrt{2\pi}$$

has large  $c_n$  for *n* large (bad for convergence).

But notice that singularities are at only one point, but cause all  $c_n$  to be large.

Wavelets can deal with problem of localization of singularities, since they are localized.

Advantages of FS:

- "Frequency content" displayed in sizes of the coefficients  $a_k$  and  $b_k$ .
- Easy to write derivatives of *f* in terms of series (and use to solve differential equations)

### Fourier series are a natural for differentiation.

Equivalently sines and cosines are eigenvectors of the derivative operator  $\frac{d^2}{dx^2}$ .

Disadvantages:

• Usual Fourier transform or series not well-adapted for time-frequency analysis (i.e., if high frequencies are there, we have large  $a_k$  and  $b_k$  for k = 100. But what part of the function has the high frequencies? Where x < 0? Where 2 < x < 3? **Possible solution:** 

Sliding Fourier transform -



fig 5

Thus first multiply f(x) by "window"  $g(x - kx_0)$ , and look at Fourier series or take Fourier transform: look at

$$\int_{-L}^{L} dx \, f(x) \, g_{jk}(x) = \int_{-L}^{L} dx \, f(x) \, g(x - kx_0) e^{i j \frac{\pi}{L} x} \equiv c_{jk}$$

Note however: functions  $g_{jk}(x) = g(x - kx_0)e^{ij\frac{\pi}{L}x}$  not orthonormal like sines and cosines; do not form a nice basis – need something better.

#### 5. Wavelet transform

Try: Wavelet transform - fix appropriate function h(x).



Then form all translations by integers, and all 'scalings' by powers of 2:

$$h_{jk}(x) = 2^{j/2}h(2^jx - k)$$

 $(2^{j/2} = normalization constant)$ 



Let

$$c_{jk} = \int dx f(x) h_{jk}(x).$$

If *h* chosen properly, then can get back *f* from the  $c_{jk}$ :

$$f(x) = \sum_{j,k} c_{jk} h_{jk}(x)$$

These new functions and coefficients are easier to manage. Sometimes much better –

Advantages over windowed Fourier transform:

- Coefficients  $c_{jk}$  are all real
- For high frequencies (j large), functions  $h_{jk}(t)$ have good localization (get thinner as  $j \rightarrow \infty$ ; above diagram). Thus short lived (i.e. of small duration in x) high frequency components can be seen from wavelet analysis, but not from windowed Fourier transform.
- Note  $h_{jk}$  has width of order  $2^{-j}$ , and is centered about  $k2^{-j}$  (see diagram earlier).

#### **DISCRETE WAVELET EXPANSIONS:** Take a basic function h(x) (the basic wavelet);



$$h_{jk}(x) = 2^{j/2}h(2^jx - k).$$

Form discrete wavelet coefficients:

$$c_{jk} = \int dx f(x) h_{jk}(x) \equiv \langle f, h_{jk} \rangle.$$

### Questions:

- Do  $c_{jk}$  characterize f?
- Can we expand f in an expansion of the  $h_{jk}$ ?
- What properties must h have for this to happen?
- How can we reconstruct f in a numerically stable way from knowing  $c_{jk}$ ?

We will show: It is possible to find a function h such that the functions  $h_{jk}$  form such a perfect basis for functions on  $\mathbb{R}$ .

That is,  $h_{jk}$  are orthonormal:

$$\langle h_{jk}, h_{j'k'} \rangle \equiv \int h_{jk}(x) h_{j'k'}(x) dx = 0$$

unless j = j' and k = k'.

And any function f(x) can be represented by the  $h_{jk}$ :

$$f(x) = \sum_{j,k} c_{jk} h_{jk}(x).$$

So: like Fourier series, but  $h_{jk}$  are better (e.g., non-zero only on a small sub-interval, i.e., compactly supported)

### 6. A SIMPLE EXAMPLE: HAAR WAVELETS

Motivation: suppose have basic function

$$\phi(x) = \begin{cases} 1 \text{ if } 0 \le x \le 1\\ 0 \text{ otherwise} \end{cases} = \text{basic "pixel"}.$$

We wish to build all other functions out of pixel and translates  $\phi(x-k)$ 



fig 8:  $\phi$  and its translates

Linear combinations of the  $\phi(x-k)$ :

$$f(x) = 2\phi(x) + 3\phi(x-1) - 2\phi(x-2) + 4\phi(x-3)$$



fig 9: linear combination of  $\phi(x-k)$ 324

[Note that any function which is constant on the integers can be written in such a form:]



fig 10: approximation of f(x) using the pixel  $\phi(x)$  and its translates.

Define  $V_0$  = all square integrable functions of the form

$$g(x) = \sum_{k} a_k \phi(x - k)$$

all square integrable functions which are constant on integer

#### intervals



fig 11: a function in  $V_0$ 

To get better approximations, shrink the pixel :



fig 12:  $\phi(x)$ ,  $\phi(2x)$ , and  $\phi(2^2x)$ 



fig 13: approximation of f(x) by translates of  $\phi(2x)$ .

#### Define

 $V_1$  = all square integrable functions of the form

$$g(x) = \sum_{k} a_k \phi(2x - k)$$

 all square integrable functions which are constant on all half-integers



fig 14: Function in  $V_1$ 

Define  $V_2 =$ sq. int. functions

$$g(x) = \sum_{k} a_k \phi(2^2 x - k)$$

= sq. int. fns which are constant on quarter integer intervals



fig 15: function in  $V_2$ 334

Generally define  $V_j$  = all square integrable functions of the form

$$g(x) = \sum_{k} a_k \phi(2^j x - k)$$

= all square integrable functions which are constant on  $2^{-j}$  length intervals

[note if j is negative the intervals are of length greater than 1].