
572

16  Additional Topics:  Compact and Continuous
 Wavelet expansions

1.  Other examples
Note again it is possible to get other wavelets this way:  If

we demand

9 9 9 9ÐBÑ œ Þ##' Ð#BÑ  Þ)&% Ð#B  "Ñ  "Þ#% Ð#B  #Ñ

 Þ"*' Ð#B  $Ñ  "Þ%$% Ð#B  %Ñ  Þ!%' Ð#B  &Ñ9 9 9
 Þ""! Ð#B  'Ñ  Þ!!) Ð#B  (Ñ  Þ!") Ð#B  )Ñ9 9 9

        Þ!!% Ð#B  *Ñ9 (28)
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Then this results with an 7 Ð Ñ! =

7 Ð Ñ œ Þ""$  Þ%#( /  Þ&"# /  Þ!*)/ á  Þ!!#/ Þ!
3 #3 $3 *3= = = = =  
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Fig 44:  Real (symmetric) and imaginary parts of ; note7!

condition  of Cohen's theorem is satisfied. (ii)
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Can check it satisfies condition (ii) of Cohen's theorem
and resulting  is obtained:9

9 = =sÐ Ñ œ 7 Ð Î# Ñ$
4œ"

_

!
4 .

It satisfies required properties  -  of a multiresolution(a) (f)
analysis.  Corresponding scaling function  and59ÐBÑ
wavelet  are below5<ÐBÑ



576

   

   
Fig 45:  Scaling function and wavelet for the above  choice9
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NOTE:  Can show that if there is a finite number of terms
on the right side of , then corresponding wavelet(28)
and scaling function are compactly supported.



578

2.  Numerical uses of wavelets
 Note that once we have an orthonormal wavelet

basis , can write any function:Ö ×<45

0ÐBÑ œ + ÐBÑß"
4ß5

45 45<

with .  Numerically, can find + œ Ð0ß Ñ + œ Ø ß 0Ù45 45 45 45< <
using numerical integration to evaluate inner productÞ

With Daubechies and other wavelets, there are no closed
form for the wavelets, so above integrations must be
performed on the computer.
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But there are very efficient methods of doing this: in order
to get the wavelets  into the computer, we justall <45

need to input one - all others are rescalings and
translations of the original one.

There are efficient algorithms to get coefficients ; more+45

details in Daubechies' book.
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3. SOME GENERAL PROPERTIES OF
ORTHONORMAL WAVELET BASES:

Theorem:   If  the basic wavelet      has exponential<ÐBÑ
decay, then      cannot be infinitely differentiable.<

(in particular, if      has compact support, then   < <
cannot be infinitely differentiable).

 Proof:  Daubechies, Chapter 5.
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Compactly Supported Wavelets:

So far we are able to get wavelets

< <45
4Î# 4ÐBÑ œ # Ð# B  5Ñ

which form an orthonormal basis for   Note HaarP Þ#

wavelets had compact support.  When will wavelets
be compactly supported in general?

Recall we assume that given basic scale space ,  thatZ!

we have scaling (pixel) function  such that 9
Ö ÐB  5Ñ× Z9 5 !  form basis for   .
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Recall

ì   ,Z § Z! "

ì        9 9ÐBÑ − Z Ê ÐBÑ − Z! "

ì  È# Ð#BÑ − Z9 "

ì    form a basis for Ö # Ð#B  5Ñ× ZÈ 9 5œ"
_

"

Recall since , we have for some choice of : 9ÐBÑ − Z 2" 5

9 9ÐBÑ œ 2 # Ð#B  5Ñ" È
!

_

5 .

Constants   relate the space     to   .2 Z Z5 ! "
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We will see that:

Theorem:
Finitely many   ,   have compact   2 Á ! Í5 < 9

support.
Proof:
 
É :  Assume  has compact support.  Then note since9È# Ð#B  jÑ9  are orthonormal,

2 œ # Ð#B  jÑ ÐBÑ.Bj ( È 9 9

œ ! j Àfor all but a finite number of  
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fig 46 Note integral of product  for all but finite  À 2 œ œ !6

  number of to prove :  (rough sketch only)j Ê
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Assume that  are  for all but a finite number of .2 ! 55

Then need to show  has compact support.9ÐBÑ

 Strategy of proof:  look at 9 =sÐ ÑÞ

 Recall we defined

7 Ð Ñ œ /
2

#
!

5

5 35= " È =
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Recall:

9 = =
1

sÐ Ñ œ 7 Ð# Ñ
"

#È $
4œ"

_

!
4 .

ì s From this show that ( ) extends to an analytic9 =
function of  in whole complex plane satisfying:  =

l Ð Ñl Ÿ GÐ"  l lÑ /s9 = = Q Rl lIm=

for constants  and Q RÞ
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ì   This implies by Paley-Wiener type theorems that
9 9ÐBÑ œ J Ð Ñs"  is compactly supported. 
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4.  GENERIC PRESCRIPTION FOR COMPACTLY
SUPPORTED WAVELETS:

ì  Start with finite sequence of numbers (define how25

Z Z! " will be related to )

ì  Construct

7 Ð Ñ œ /
2

#
!

5

5 35= " È =
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check that it satisfies Cohen's theorem conditions À

l7 Ð Ñl Á ! l l Ÿ Î$Þ! = = 1 for 

and

l7 Ð Ñl  l7 Ð  Ñl œ "Þ! !
# #= = 1

ì  Construct   

"

#
7 Ð# Ñ œ Ð ÑsÈ $

1
= 9 =

4œ"

_

!
4
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ì  Construct Fourier transform of wavelet by:

< = = 1 9 =s sÐ Ñ ´ / 7 Ð Î#  Ñ Ð Î#Ñ3 Î#
!

= ,

ì  Take inverse Fourier transform to get wavelet<ÐBÑ œ
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5.  SOME FURTHER PROPERTIES OF WAVELET
EXPANSIONS

QUESTION:  Do wavelet expansions actually converge
to the function being expanded at individual points  ?B

Assume that scaling function  is bounded by an9
integrable decreasing function.  Then:
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Theorem:  If  is a square integrable function, then the0
wavelet expansion of    0

0ÐBÑ œ + ÐBÑ"
4ß5

_

45 45<

converges to the function  almost everywhere (i.e.,0
except on a set of measure ).!
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QUESTION:  How fast do wavelet expansions converge
to the function ?0

ANSWER:  That depends on how “regular" the wavelet <
is.  More particularly it depends exactly on the Fourier
transform of :<
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Theorem:   In  dimensions, the wavelet expansion   .

0ÐBÑ œ + ÐBÑ"
4ß5

45 45<

converges to a smooth  in such a way that the partial0
sum    

"
4ŸRß5

45 45+ ÐBÑ<
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differs from  at each  by at most , iff  0ÐBÑ B G † #R=

( l Ð Ñl l l .  _s< = = =# #=. .



596

6.  CONTINUOUS WAVELET TRANSFORMS

Consider a function  (i.e.,  is square< <ÐBÑ − P#

integrable), such that  decays fast enough at <ÐBÑ _
(faster than ), and such that"ÎB#

(
_

_

<ÐBÑ .B œ !.

Then we can define an integral wavelet expansion
(integrals instead of sums) using re-scalings of   :<ÐBÑ
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Define rescaled functions

< <+ß,
"Î#ÐBÑ ´ l+l Ð+ÐB  ,ÑÑ.

   [note  in definition of Daubechies]+ Ä "Î+

Here .  Thus  measures how much  has been+ß , − +‘ <
stretched (dilation parameter), and  measures how,
much  has been moved to the right (translation<
parameter).

New point: dilation parameter  and translation+
parameter  can take on any real value.,
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Now define wavelet expansions in this case (analogous
to Fourier transform -- called wavelet transform): given
0 − P Ð Ñ# ‘ <, we define the transform (assuming that 
is real)

Ð[0ÑÐ+ ,Ñ œ .B 0ÐBÑ l+l Ð+ÐB  ,ÑÑ, ( "Î#<

œ .B 0ÐBÑ ÐBÑ( <+ß,  

œ ß 0Ù <+ß,
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How to recover  from ?0 Ð[0ÑÐ+ß ,Ñ

Claim:

0ÐBÑ œ G .+ ., Ð[0ÑÐ+ß ,Ñ ÐBÑ( (
_ _

_ _

+ß,<

where

G œ # . l l l Ð Ñl Þs" " #1 = = < =(
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Pf. of claim (sketch; details in Daubechies, Ch. 2):

We will show that for any ,1ÐBÑ − P#

  ¡1ÐBÑß 0ÐBÑ œ

  ¡( (1ÐBÑß G .+ ., Ð[0ÑÐ+ß ,Ñ ÐBÑ
_ _

_ _

+ß,<
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To see this, note that

  ¡ (1ÐBÑß 0ÐBÑ œ 1ÐBÑ 0ÐBÑ .B
_

_

  

œ . 1 Ð Ñ 0Ð Ñs s(
_

_

= = =
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[next use “Plancherel Theorem” for wavelet transforms]

œ G .+ ., Ð[1ÑÐ+ß ,ÑÐ[0ÑÐ+ß ,Ñ( (
œ G .+ ., Ø1ÐBÑß ÐBÑÙÐ[0ÑÐ+ß ,ÑÐBÑ' ' <+ß,

œ 1ÐBÑß G .+ ., Ð[0ÑÐ+ß ,Ñ ÐBÑ ß¤ ¥( (  <+ß,

as desired, completing the proof.
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Thus we know how to recover  from 0ÐBÑ [0Ð+ß ,Ñ

(analogous to recovering  from  in Fourier0ÐBÑ 0Ð Ñs =
transform).

QUESTION: What sorts of functions are ?Ð[0ÑÐ+ß ,Ñ
For some choices of  , these are spaces of analytic<
functions.
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7.  Convolutions:

Definition:  The convolution of two functions  and0ÐBÑ
1ÐBÑ is defined to be

0ÐBÑ‡1ÐBÑ ´ 0ÐB  CÑ1ÐCÑ.CÞ(
_

_

Theorem 3:  The convolution is commutative:  0‡1 œ 1‡0
 Exercise.Proof:  

Theorem 4:  The Fourier transform of a convolution is a
product.  Specifically,
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Y 1 = =Ð0ÐBÑ‡1ÐBÑÑ œ # 0Ð Ñ1Ð Ñs sÈ
 Proof:  Exercise.

Lemma 5:   For any function , 0 Ð0ÐBÑÑ œ 0Ð ÑsY =
 Exercise.Proof:  

8.  APPLICATION OF INTEGRAL  WAVELET
TRANSFORM: IMAGE RECONSTRUCTION (S.
Mallat)
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Dyadic wavelet transform: a variation on continuous
wavelet transform.

Now define new dilation only by powers of 2; arbitrary
translations:

< <4ß,
4 4ÐBÑ œ # Ð# ÐB  ,ÑÑ

Define

< <4
4 4ÐBÑ œ # Ð# BÑ.

(Still allow  to take all values, but restrict .), − + œ #‘ 4
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Define this dyadic (partially discrete) wavelet transform
by:

Ð[0ÑÐ4ß ,Ñ œ 0ÐBÑ ÐBÑ .B( <4ß,

i.e., usual set of wavelet coefficients, except that  is,
continuous.



608

Note:

Ð[0ÑÐ4ß ,Ñ œ 0ÐBÑ ÐBÑ .B( <4ß,   

œ .B 0ÐBÑ # Ð# ÐB  ,ÑÑ( 4 4<  

œ .B 0ÐBÑ ÐB  ,Ñ( <4

œ Ð0‡ ÑÐ,Ñ<4
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(a convolution) where as above

< < <4
4 4 4ÐBÑ œ # Ð# BÑ œ # shrinking of  by a factor .

New assumption: Fourier transform ( ) satisfies< =s

"
4œ_

_
4 #l Ð# Ñl œs "

#
< =

1
.

Now: given , consider dyadic wavelet transform;0ÐBÑ
+ œ #4  only:
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Can show under our assumptions that can recover  in0
this case too:

Recovery formula for  is:  0

0ÐBÑ œ Ð[0ÑÐ4ß BÑ‡ ÐBÑ"
4œ_

_

4<

(convolution in variable ).  It is easy to check that this isB
correct:  if  denotes Fourier transform:Y

Y < !
4œ_

_

4Ð[0ÑÐ4ß BÑ‡ ÐBÑ
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    œ 0ÐBÑ‡ ÐBÑ‡ ÐBÑY < < !
4œ_

_

4 4

œ 0ÐBÑ‡ ÐBÑ‡ ÐBÑ" a b
4œ_

_

4 4Y < <

œ # 0Ð Ñ Ð Ñ Ð Ñs s s1 = < = < ="
4œ_

_

4 4
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œ # 0Ð Ñ Ð# Ñ Ð# Ñs s s1 = < = < ="
4œ_

_
4 4 . 

œ # 0Ð Ñl Ð# Ñls s1 = < ="
4œ_

_
4 #  

œ 0Ð Ñ # l Ð# Ñls s= 1 < ="
4œ_

_
4 #  
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œ 0Ð Ñs = .

QUESTION: Given , what sort of function is the0ÐBÑ
wavelet transform , as a function of  andÐ[0ÑÐ4ß ,Ñ 4
,?

Let  the collection of possible functionsZ œ
Ð[0ÑÐ4ß ,Ñ œ  collection of possible wavelet
transforms.  When is an arbitrary function  a1Ð4ß ,Ñ
wavelet transform?
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Can check that  must satisfy a so-called reproducing1
kernel equation:  is the wavelet transform of1Ð4ß ,Ñ
some function iff

1Ð4ß ,Ñ œ ÐO1ÑÐ4ß ,Ñ ´ Ð,Ñ‡ Ð  ,Ñ‡1Ðjß ,Ñ   "
jœ_

_

4 j< <

[this equation defines  ; note convolution is in .]O1 ,

Back to recovering  from wavelet transform:0
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Thus we can recover  as a sum of  at different scales: 0 0

0 œ Ð[0ÑÐ4ß BÑ‡ Ð  BÑ"
4œ_

_

4< .
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Since    is a known function, we can recover   from the< 0
sequence of functions.  Assume  is a cubic B-+ÐBÑ
spline:

Fig.  47:  A cubic B-spline is a symmetric compactly supported+ÐBÑ
piecewise cubic polynomial function whose transition points are

twice continuously differentiable
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Now let the wavelet be its first derivative:  <ÐBÑ œ +ÐBÑ.
.B

Fig 48:  is the wavelet<ÐBÑ œ +ÐBÑ.
.B
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Using the wavelet <ÐBÑ À

  Ð[0ÑÐ  #ß BÑ
  Ð[0ÑÐ  "ß BÑ
  Ð[0ÑÐ!ß BÑ
  Ð[0ÑÐ"ß BÑ
  Ð[0ÑÐ#ß BÑ
      Ð[0ÑÐ$ß BÑ
    
To see that these pieces of  represent  at different0 0

scales, look at example:



619
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So: one can recover  from knowing the functions0

Ð[0ÑÐ4ß BÑ.
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This is a lot of functions.  What advantage of storing  in0
such a large number of functions?  We can compress
the data.

CONJECTURE:  We can recover  not from knowing all0
of the functions , but just from knowing their[Ð4ß BÑ
maxima and minima.
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Meyer has proved this conjecture false strictly speaking
certain choices of (including the above derivative<
<ÐBÑ of the cubic spline).  It has been proved true for
another choice, the derivative of a Gaussian.

<ÐBÑ œ /
.

.B
B#

However, for either choice of  numerically it is possible<
to recover from knowing only the maxima and0ÐBÑ
minima of the functions [Ð4ß BÑÞ
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Numerical method:

Assume that we are given only the maxima and minima
points of the function  for each .  How to[Ð4ß BÑ 4
recover ?0

Given , first take its wavelet transform; get .0 [Ð4ß BÑ
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Define

> œ 1Ð4ß BÑ set of all functions  which have the same set
of maxima and minima (in ) as  for each .B [Ð4ß BÑ 4

Z œ 1Ð4ß BÑ set of all  which are wavelet transforms of
some function of .B

Idea is: the true wavelet transform  of our given[0Ð4ß BÑ
function  is in   (i.e. has the same maxima as0ÐBÑ >
itself) and is in  (i.e., in the collection of functionsZ
which are wavelet transforms).
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Thus

[0 −  Z> .
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intuitive picture:

  
fig 49
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Thus if we know just the maxima of  , we can try[0Ð4ß BÑ
to find [0Ð4ß BÑ

That is:

1. We know maxima of , so[0Ð4ß BÑ
2. know  all functions with same maxima as> œ

[0Ð4ß BÑ
3. Find   as “unique” point in  which is also a[0Ð4ß BÑ >

wavelet transform, i.e., unique point in :>  Z
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Algorithm:

1. Start with only the maxima information about .[Ð4ß BÑ
Call the maxima information.Q

2. Make initial guess using function  which has the1 Ð4ß BÑ"

same maxima as .[Ð4ß BÑ

3. Find closest function in  set of waveletZ œ
transforms to .  Call this function 1 Ð4ß BÑ 1 Ð4ß BÑÞ" #

4. Find closest function in   functions with same> œ
maxima as  to .  Call this function Q 1 Ð4ß BÑ 1 Ð4ß BÑÞ# $
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5. Find closest function in  to ; call this .Z 1 Ð4ß BÑ 1 Ð4ß BÑ$ %

6. Find closest function in  to ; call this > 1 1 Þ% &

7. Continue this way: at each stage  find the closest4
function  to  in1 14 4"

the space  or  (alternatingly).Z >
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Eventually the   as desired.1 Ð4ß BÑ [0Ð4ß BÑ
4 Ä _

4 Ò
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CONCLUSION:  We can recover the wavelet transform
[0Ð4ß BÑ of a function just by knowing its maxima in
B.

THE POINT:  Compression.  We can store the maxima of
[0  using a lot less memory.

APPLICATION:  Compression of images:
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Fig. 50
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Fig.  51

9.  Wavelets and Wavelet Transforms in Two
Dimensions

Multiresolution analysis and wavelets can be generalized
to higher dimensions.  Usual choice for a
two-dimensional scaling function or wavelet is a
product of two one-dimensional functions. For
example,

9 9 9#ÐBß CÑ œ ÐBÑ ÐCÑ
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and scaling equation has form

9 9ÐBß CÑ œ 2 † # Ð#B  5ß #C  6ÑÞ"
5ß6

56

Since  and  both satisfy the sclaing equation9 9ÐBÑ ÐCÑ

9 9ÐBÑ œ 2 † # Ð#B  5Ñß" È
5

5

we have   Thus two dimensional scaling2 œ 2 2 Þ56 5 6

equation is product of two one dimensional scaling
equations.
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We can proceed analogously to construct wavelets using
products of one-dimensional functions. However,
unlike one-dimensional case, we have three rather
than one basic wavelet. They are:

< 9 <ÐMÑÐBß CÑ œ ÐBÑ ÐCÑ

< < 9ÐMMÑÐBß CÑ œ ÐBÑ ÐCÑ

< < <ÐMMMÑÐBß CÑ œ ÐBÑ ÐCÑÞ
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The generalization of the one-dimensional wavelet
equation leads to  the following relations:

< 9ÐMÑ

5ß6
56
ÐMÑ

ÐBß CÑ œ 1 † # Ð#B  5ß #C  6Ñ"

< 9ÐMMÑ

5ß6
56
ÐMMÑ

ÐBß CÑ œ 1 † # Ð#B  5ß #C  6Ñ"

< 9ÐMMMÑ

5ß6
56
ÐMMMÑ

ÐBß CÑ œ 1 † # Ð#B  5ß #C  6Ñ"
where and  1 œ 2 1 ß 1 œ 1 2 ß 1 œ 1 1 Þ56 56 56

ÐMÑ ÐMMÑ ÐMMÑ
5 6 5 6 5 6
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We can generate two-dimensional scaling functions and
wavelets using the functions ScalingFunction and
Wavelet then taking the product. For example, here
we plot the Haar wavelets in two dimensions. Various
translated and dilated versions of the wavelets can be
plotted similarly.
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Fig. 52:  Two dimensional Haar scaling function

9ÐBß CÑ
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Fig. 53:  Haar wavelet <ÐMÑÐBß CÑ
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Fig. 54:  Second wavelet < <ÐMMÑ ÐMÑÐBß CÑ œ ÐCß BÑ
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Fig. 55:  Third wavelet <ÐMMMÑÐBß CÑ
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As example of another wavelet, here is so-called "least
asymmetric wavelet" of order 8 in two dimensions À
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Fig. 56:  Least asymmetric wavelet of order 8


