
Probability Theory

1Þ Background

2 notions of probability:

         Probability  =  analysis

         Probability  =  common notion

A few words on common notions..



2. Experiments and sample spaces

Define as experiment any sequence of events
with an outcome.

Example 1:   Toss of a die

Example 2:   Study on deaths of cancer patients.

Example 3:    High temperatures of day



When we are interested in an experiment, we
want to somehow record its outcome, some
salient aspect of outcome -- set of all possible
outcomes (which has to be classified by
experimenter)

Possible outcomes form     sample space.H œ

Example 4:   Die toss.   H œ Ö"ß #ß $ß %ß &ß '×



Example 5:   Cancer patients

                       4 œ Outcomes
  received treatmentV œ
  no treatmentR œ
  livedP œ
  diedH œ
This extends to other characteristics - genetic

profiles in bioinformatics



3.  Events and probabilities

Example 6:   High temperature measurement

     Sample space     a real numberœ œ Ö> À > ×H

So:       Have set theory and real life situations.

If       is an   E § ß EH event.



Example 7:    If   E œ Ö#ß %ß '× § Ö"ß #ß $ß %ß &ß '×

then      is an event.E

Why an   event ?

Intuitively, an event means something that has
occurred, and above the event   E œ Ö#ß %ß '×
represents the    of an evenoccurrence
number.

Again can translate between set theory and
intuitive notions of meanings of words.



Probabilist wants to assign probability a number
between     and    to every event.! "

Thus, e.g., if   event of an even rollE œ Ö × œ
Ö#ß %ß '×

want     TÐEÑ œ "
# [Rationales can vary]

So:   Ideally, want to assign numbers
(probabilities) to subsets



Example 8:     TÐ"Ñ œ "
'

T Ð#Ñ œ "
'

T Ð$Ñ œ "
'

T Ð'Ñ œ "
'



Thus, each component in      has probability  .H "
'

Each subset     can be obtained by addingE
measure of component subsets   .E3

Want     TÐ Ñ œ "H

               ?why
So:    given a set in a sample space want

probabilities...
        ?TÐEÑ œ

           .TÐ Ñ œ "H



4.  Probability measures
Example 9:  Consider an ideal random number

generator which generates a real number in
Ò!ß "Ó À



In this case:

H œ Ò!ß "Óà

T Ð Ñ œ TÐÒ!ß "ÓÑ œ "H

Now we have:

T !ß œ !ß œ’ “ ’ “" " "
# # # proportional to likelihood of 

T Ò+ß ,Ó œ ,  +Þ

What subsets can we find probability measure of?



(i)  Any interval Ð+ß ,Ñ À T ÐÐ+ß ,ÑÑ œ ,  +
(ii) Any finite union of disjoint intervals

T Ð+ ß , Ñ œ Ð,  + Ñ Ð‡Ñ8 9. �
3œ"

∞ ∞

3 3 3 3

3œ"

Let's define the collection of sets whose
measures are easy to calculate through
formula (*):



Y! œ
Ö Ð+ ß , Ñ×all finite unions of disjoint open intervals 3 3

œ Ö ∪ Ð+ ß , Ñl N finite}
3−N

3 3

Note it is easy to define the measure of any set in
Y! using formula (*).

Note that  is a Y! field of sets, i.e. has all the
properties of a -field except that it is closed on5
only  unions, not necessarily countablefinite
ones.



5.  -Fields of subsets5

The natural extension of this to the -field  of5 Y
Borel sets on  can be shown to be unique,Ò!ß "Ó
and is Lebesgue measure on Ò!ß "ÓÞ

Definition 1:  If  then the measure  isTÐ Ñ œ " TH
called a on and theprobability measure Hß
triple  is called a Ð ß ß T ÑH Y probability space.



6.  More interesting example:

Coin tossing:       number of tosses∞

                     (all sequences of   )H œ Ö Lß X ×

L œ "
X œ !

Ê œ ∞ L = X =H all  sequences of  and w w

How to assign probabilities?



Let , with= H−

= = = =œ á œ !""!"!"!!ÞÞÞ" # $

Let

XÐ Ñ œ Þ á œ Þ!""!""á= = = =" # $

be the corresponding dyadic expansionÞ



Note:    decimal expansion:
Þ"#$%&á œ   á

" # $

"! "!! "!!!
 

œ   á
" #

"! 10#

dyadic expansion:

Þ!""!!""" œ     á
! " " ! !

# # # # ## $ % &



Thus we work in base 2 and write numbers as
! "'s  and  's

Note that

X À Ä Ò!ß "ÓH

defines    correspondence;"  "

                      first digit. Ð Ñ œ œ" "= =

                      second digit, etc.. Ð Ñ œ# #= =



Note:     decimals with first digit     are in  ;! Ò!ß Ñ"#
decmials with first digit 1 are in Ò ß "ÓÞ"

#

Then  E œ Ö À . Ð Ñ œ ! × Ê XÐE Ñ œ Ò !ß Ñ" " "
"
#= =

 first toss in correspondingÊ E œ Ö À" =
sequence is a tails}

 We will assign prob. of heads onTÐE Ñ œ œ"
"
#

first toss

œ XÐE Ñ œ TÐXÐE ÑÑLebesgue measure of " "



[note we are using the same notation  for:T

  measures of subsets of  = all sequences ofì H
coin tosses and for

  measures of subsets of  correspondingì Ò!ß "Ó
to subsets of H

 We anticipate this notation will not cause
problems - that

TÐEÑ œ TÐXÐEÑÑÞ



Continuing - consider the set

 E œ Ö À . Ð Ñ œ !ß . Ð Ñ œ "×# " #= = =
Ê XÐE Ñ œ Ò ß ÑÞ#

" "
% #

 Probabilistically:  would like TÐE Ñ œ † œ#
" " "
# # %

 
 Also we have Lebesgue measureTÐXÐE ÑÑ œ#

of XÐE Ñ œ Þ#
"
%



E œ Ö À . Ð Ñ œ !ß . Ð Ñ œ "ß . Ð Ñ œ "×$ " # $= = = =

Ê XÐE Ñ œ ß
$ "

) #
$ ’ ‹

œ  all numbers    such that
Þ!"" á Þí
anything



 Again TÐE Ñ œ TÐXÐE ÑÑ œ Þ$ $
"
)

This correspondence  clearlyTÐEÑ œ TÐXÐEÑÑ
works for any  corresponding to a dyadicE
interval XÐEÑÞ

By using countable additivity it also works for any
countable unions of sets corresponding to
dyadic intervals.  That is for any disjoint
collection  sets in  corresponding to dyadicE3 H
intervals, we must have:



TÐ ∪ E Ñ œ TÐXÐ ∪ E ÑÑ œ TÐ ∪ XÐE ÑÑ
3 3 3

3 3 3

Since any open set  can be written as suchÐ+ß ,Ñ
a union, we conclude that if , thenXÐEÑ œ Ð+ß ,Ñ

T ÐEÑ œ TÐX ÐEÑÑ

Thus by unique extension theorem
TÐEÑ œ TÐXÐEÑÑ E § for any set  whoseH
image  is a Borel set in .XÐEÑ Ò!ß "Ó



Ê E §  Define  probability of set  in coin tossH
space to be Lebesgue measure
TÐXÐEÑÑ § [0,1]

     Probability space     LebesgueÊ Ð ß ß T Ñ œH Y
measure on   Ò!ß "Ó



1.  The span of probability

Computational biology -

A.  Genomes:



è  Many organisms are fully sequenced:
 human, mouse, chicken, yeast, viruses,  

microbes

è  Human genes:  about 3Gbp; 22,000 genes

è  In humans genes represent about 1.2% of
DNA

è  97% of genome considered "junk DNA"
 (meaning its function is yet unknown)



B. Expression of genes:  when are they
transcribed?  Use gene expression arrays

Source:  UCSC

Measure expression (transcription) of several tens
of thousands of genes in a single sample.



C.  Gene structures  We now have 3D-structures
of around 70,000 proteins (via NMR or
crystallography).   We have about 1,300,000
sequenced proteins.

Note:  genes are up- and down-regulated
(through TF control) in groups:

functional genomics - understanding basics of
transcriptional regulation.



D.  Hidden Markov models in computational
biology

Recall:

•   many genomic datasets from manyb
organisms.

 Want to fully know genomic codes - major goal
of

 computational biology.

•  Needed (among others) for:  drug design,
medical   



 diagnosis, medical treatment, many other
research

 areas.

Initial use of HMM:  Speech processing

Important characteristic for HMM - left to right
ordering as a  

 sequence of words/sounds.

Many computational biology problems can be
mapped into  



 corresponding speech recognition and other
language  

 problems:

Example:  protein family classification as speech
recognition.

Metaphor:

Different vocalizations of the same word
Ç finding different functional regions of proteins

in the
 same family



Parsing phonemes into words
Ç  parsing genomic sequences into codons

HMM as a mathematical language model
Ç   HMM as a genomic sequence model

We want a structured model of sequence data;
in particular of biological molecular sequences.
Input:  DNA sequence ,\ œ ÖB ßá ß B × −" 8

8D
where D œ ÖEßGßKß X×



Output:  Labeling of  as belonging to an intron,B3

exon, or an intergenic region.



Existing tools:  Genie, GeneID, HMMGene,
GenScan

Models consist of several sub-models for different
genomic regions:

•&2



2. Back to coin tossing:  Some proofs

But now let's prove some things.

Recall we have identified the      sequences of∞
! "'s  and   's  in coin toss space with binary
expansions



Recall that if  then = = = = = =œ Þ á . Ð Ñ œ Þ" # $ 3 3

I want to define

E œ À . Ð Ñ œ Þ
" "

8 #
œ G�= =lim

8Ä∞
3œ"

8

3 

œ À
"

#
œ G=    average value of the digits is   

 proportion of   's   and  's is equal  œ Ö À ! "=
   asymptotically×



This is the set of flip sequences where if you
calculate the proportion of heads, it gets closer
and closer to   ."

#

Many seem like not a large set; after all, aren't
there a lot of possibilities where he flips all
heads or at least heads 2/3 times?   NO!

We will show

                   cÐEÑ œ "

cÐE Ñ œ !Þ-



What does this say about binary expansion?  It
says that if     set of binary numbers whereE œ
average value of the first      digits is   ,  then8 "

#

7ÐEÑ œ " E.       are  normal numbers.

Big deal?



Similarly, if   decimal numbers whereF œ Ö
proportion of   's  approaches  ,   then! ×"

"!

7ÐFÑ œ "Þ

In general, whatever base we're in    (normal7
numbers) œ "Þ



Let E œ œ Ð ß ß ßá Ñ À œœ G�= = = = =" # $ 3
" "
8 #

3œ"

8

We wanted to show   .TÐEÑ œ "

Equivalently, we show

Theorem 1:     If   E œ Ö œ ßá À ?= = = =" # $ 3
"
8

3œ"

8�
œ ×"

#

  (   "normal numbers" ),œ

then   7ÐEÑ œ "Þ



Remark:   This is a special case of the strong law
of large numbers.



Proof (optional):     For each number    = − Ò!ß "Óß

= = = =œ Þ á" # $

               let       or
. Ð Ñ œ œ

! "
8 8= = œ

Let  =< Ð Ñ œ #. Ð Ñ  "8 8= =

œ " . Ð Ñ œ "
 " . Ð Ñ œ !

if
if   

8

8

=
=



Note equivalence:

"!!!""!ÞÞÞ Ä

"  "  "  " " "  " Ä !

avg

avg

"
#

, , , , , , ...

E œ À . Ð Ñ Ä Þ
" "

8 #
œ G�= =

3œ"

8

8



œ À Ä
" < Ð Ñ  " "

8 # #

œ À < Ð Ñ  † Ä
" " 8 "

#8 8 # #

œ À < Ð Ñ Ä !
"

#8

œ À < Ð Ñ Ä !
"

8

œ G�
œ G�
œ G�
œ G�

=
=

= =

= =

= =

3œ"

8
8

3œ"

8

8

3œ"

8

8

3œ"

8

8



But:   pick   ,      an integer.%  ! 8

Let

= Ð Ñ œ < Ð Ñ8 8
3œ"

8

= =�



Now:   consider

TÐ À = Ð Ñ   8 Ñ= = %8

œ TÐ À = Ð Ñ   8 Ñ

œ " .

Ÿ .
= Ð Ñ

8

Ÿ = Ð Ñ . Þ
"

8

= = %

=

=

%
=

%
= =

8
% % %

= Ð Ñ 8

= Ð Ñ 8

8
%

% %

% % 8
%

(
(

(

8
% % %

8
% % %

= %

= %



Now -- examine

= Ð Ñ œ < Ð Ñ8 3

3œ"

8

= =�

= Ð Ñ œ < Ð Ñ < Ð Ñ < Ð Ñ < Ð Ñ8
%

œ" œ"

8 8 8 8

œ" œ"

= = = = =Œ 7Œ 7Œ 7Œ 7� � � �
α #

α " # $

" $

œ < Ð Ñ < Ð Ñ < Ð Ñ < Ð Ñ�
α " # $

α " # $

ß ß ß œ"

8

= = = =



( (�= Ð Ñ. œ . < Ð Ñ< Ð Ñ< Ð Ñ< Ð Ñ%

ß ß ß œ"

8

= = = = = = =
α " # $

α " # $

Let's look at what the      functions look like:<α

< Ð Ñ œ
 " œ "
 " œ !" =

=
=œ if first digit in 

if first digit in  



< Ð Ñ œ
 " œ "
 " œ !# =

=
=œ if second digit in   

if  second digit in  



Now:    what pops up in

�
α " # $

α " # $

ß ß ß œ"

8

< Ð Ñ< Ð Ñ< Ð Ñ< Ð Ñ= = = =

 (a)   when   ,    get     α " # $œ œ œ <α
%

 (b)   when          get α " # $œ Á œ < <ï α #
# #

             not equal
 (c)   when      get   α " # $œ Á Á < < <α # $

#

 (d)   when        get  α " # $œ œ Á < <α $
$



 (e)    when        get   α " # $Á Á Á < < < <α " # $



Simple case:   consider

(
!

"

< < .A Áα " α "

assume    " α

Look at any interval,        Š “5 5"
# #α αß



Then        is constant  (either    or  )< ÐAÑ  "  "α

on this interval.  But since      is" α ß < ÐAÑ"

 "  "  and      many times on this interval;
< ß"   is constant on all intervals   ,Š ‹4 4"

# #" "

and there are many of these in each intervalŠ ‹5 5"
# #α αß .



Thus, even though      is constant in    < ßα Š 5
#α

5"
#α ‹,   is not, and alternates between   <  ""

and     times.  Thus," #" α

(
5
#

5"

#

α

α

< ÐAÑ < ÐAÑ .Aα "

œ < ÐAÑ < ÐAÑ .A œ !Þα "(
5
#

5"
#

α

α



Ê < < œ !( α "



By the same reasoning, if   ,α " # $Á Á Á

( . < < < < œ !Þ= α " # $

Similarly, the integral       ' '. < < œ . < <= =α $ α $
$

œ !

and                                     ' '. < < < œ . <= =α $ # $
#

< œ !#



But:                  < ´ "α
%

< < ´ "α #
# # .

Now:



< < < < œ

<

< <

< < <

< < Ä
< < < <

α " # $

α

α "

α " #

α "

α " # $

ÚÝÝÝÝÝÛÝÝÝÝÝÜ

%

# #

#

$  intregrate two

So:



� (
α " # $

α " # $

ß ß ß œ"

8

< < < < .A

œ < . A� (
α " # $

α

ß ß ß

%

"

all 4 equal

n
     



 . < <� (
α " # $

α "

ß ß ß

# #

two equal pairs

     =

œ 8 
    ß

                                      no. times all 4 are = to I

  
number of times two

pairs are equal



α " # $
α " # $
α # " $
α $ " #

œ œ œ œ "
œ œ
œ œ
œ œ

        match different
componentsœ 8  8 Ð8  "Ñ † $ Ä

            ß ß
no. of chances for = no. chances for =

α "
# $



Ê . < < < < œ 8  $8Ð8  "Ñ� (
α " # $

α " # $

ß ß ß

=

Ê = Ð Ñ . œ 8  $8Ð8  "ÑÞ( 8
% = =

Recall         = œ < Ð ÑÞ8 3
3œ"

8� =



Ê TÐ À l= Ð Ñl   8 Ñ Ÿ = Ð Ñ.
"

8
= = % = =

%
8 % % 8

%(

œ Ÿ œ
8  $8Ð8  "Ñ $8 $

8 8 8% % % % # %

#

% % %



Ê

TÐ À = Ð Ñ   Ñ Ÿ
" $

8 8
= = %

%
¹ ¹8 # %

Let E œ À < Ð Ñ Ÿ
" "

8 5
85 3

3œ"

8œ G¹ ¹�= =

TÐE Ñ Ÿ Þ
$5

8
85

%

#



Let       for all     sufficientlyE œ Ö À − E 85 85= =
large×

Claim:       , since =ÐE Ñ œ " aR5

E ª E5 85

8œR

∞,



Ê T E

œ T Ò!ß "Ó µ E

  TÐÒ!ß "ÓÑ  T ÐE Ñ

  " 
$5

8

œ "  $5
"

8

"

Œ 7,
Œ 7.

�
�

�
�

  

˜

˜

8œR

∞

85

8œR

∞

85

8œR

∞

85

8œR

∞ %

#

%

8œR

∞

#

%
∞



let R Ä ∞Þ

Ê TÐE Ñ œ "Þ5

E œ À < Ð Ñ !
"

8 8 Ä ∞œ G�= = Ò
3œ"

8

8



E œ À < Ð Ñ Ÿ "Î5
"

8
5 8

3œ"

8œ G¹ ¹�= =

  for    large enough 8 E œ E+ 5

Ê TÐEÑ œ "Þ



3.  The scope of probability:  Genomic Markov
Models

Hypothetical situation:  choose a genome.
Model overall percentage of 2-mers (i.e., Markov

statistics)



Source:  Genome signature comparisons among
prokaryote, plasmid, and mitochondrial DNA

Allan Campbell, Jan Mrazek, and Samuel Karlin,
Proc. Natl. Acad. Sci. USA, Vol. 96, pp. 9184–

9189, August 1999

Above represent relative abundances

For a base  define  = relative abundance of 3 333

For each successive pair , e.g. AG = CT,34
(equivalent mirror reversed) let



334 œ 34proportion of successive pairs which are 

Define relative overabundance of 2-V œ œ34
3
3 3

34

3 4

mer over expected abundance if 3ß 4
independent.

[many simple statistics can be done on the
genome]

For humans:



3 3E Xœ œ Þ&(Î# œ Þ#)&

3 3G Kœ œ Þ%$Î# œ Þ#"&

3 3E Gœ Þ&(à œ Þ%$

       E G K X

  V œ

E "Þ"# Þ)$ "Þ"( Þ))
G "Þ# "Þ#& Þ#& "Þ"(
K Þ** "Þ!! "Þ#& Þ)$
X Þ(% Þ** "Þ# "Þ"#

34

Ô ×Ö ÙÖ Ù
Õ Ø

      E G K X



Ò: Ó œ ÒV † Ó œ œ

E Þ$"* Þ"() Þ#&# Þ#&"
G Þ$%$ Þ#'* Þ!&% Þ$$%
K Þ#)# Þ#"% Þ#') Þ#$'
X Þ#"" Þ#"$ Þ#&) Þ$")

34 34 43

Ô ×Ö ÙÖ Ù
Õ Ø

T

is the transition matrix for a first order Markov
(background) model of the human genome.

Note that a  order model would be!>2

     E G K X

  Ò Ó œ ÒÞ#)& Þ#"& Þ#"& Þ#)&Ó3
Ð!Ñ
34



Lecture 2:  Random variables and quantization

Example 1:    throw 2 dice

     maps outcome to number\



     \ œ Random Variable

Recall:   given              isÐ ß ß T Ñ \ À ÄH Y H ‘
measurable  if

        for all     (since intervals\ Ð+ß ,Ñ − +ß ," Y
Ð+ß ,Ñ generate all Borel

    sets).



Definition 1:   If      is measurable from      to\ H
‘, then      is a \ Random  Variable  (RV)

For an r.v. :\



If    is a random variable, we define\

JÐBÑ À T ÐA À \ÐAÑ Ÿ BÑ œ
ß

distribution function

TÐ\ Ÿ BÑ



Properties of  easily derived)J Ð

  (i)    JÐBÑ Ä " à B Ä ∞
     JÐBÑ Ä ! à B Ä ∞

 (ii)     has at most countably,  manyJ
         discontinuities i.e.,  if   are pointsB ß B ßá" #

  of discontinuity, they can be listed in a
string.

Example 2:    Suppose we record high, low
temperatures on a given day; form a sample
space



                    H œ ÖÐLßPÑ À L   P×



For each element of   ,   letH

\ÐLßPÑ œ L  P œ   temperature

range.  Might find that

\ÐLßP Ñ œ

JÐBÑ œ TÐ ÐL PÑ À ÐL  PÑ Ÿ BÑ

œ TÐ\ Ÿ BÑ œ
"  / B   !

! B  !

"

Bœ if
if



[i.e., it's right continuous]

can check this is a  d.f.

If    has a derivative, or equivalently if  is theJ J
integral of some function ,JÐBÑ œ .B 0ÐBÑ'

∞

B

then

J ÐBÑ œ 0ÐBÑ œw   density function

of   .\



Example 3:   here density    œ 0ÐBÑ œ
/
!œ B

check: JÐBÑ œ 0ÐB Ñ.B Þ(
∞

B
w w



Example 4:     Normal    / œ 0ÐBÑ"

#
B ÎDÈ 1

#

Thus, each   .\ Ä JÐBÑ œ .B 0ÐBÑ'
∞

B

Now:        JÐBÑ œ TÐA À \ÐAÑ Ÿ BÑ



Define a measure    on Borel sets  in   ,  with. U ‘
the property:

. cÐEÑ œ ÐA À \ÐAÑ − E Ñ

Can check this is a probability measure in .U



Now:

.Ð ∞ß BÓ œ TÐA À \ÐAÑ − Ð ∞ßBÓÑ

œ TÐA À \ÐAÑ Ÿ BÑ

œ TÐ\ Ÿ BÑ œ JÐBÑÞ

Ê Ð ∞ßBÓ J ÐBÑ.     determined by   .

But  is a Stieltjes measure defined by the.
increasing function , and so is totallyJÐBÑ
determined by  J



           is called the    of  .. distribution \

Now:    Let      be a random variable, and   \ 1
be a function:  define a new random variable
by

] œ 1Ð\ÐAÑÑ



Then       is a random variable.  How to]
calculate  d.f. of    ?]

J ÐCÑ ´ TÐ] Ÿ CÑ

œ TÐ1Ð\Ñ Ÿ CÑ

œ TÐ1Ð\Ñ − Ð ∞ß CÓÑ

œ T Ð\ − 1 Ð ∞ß CÓÑ

]

"



Example 5:     Suppose      has d.f.\

JÐBÑ œ
"  /

!œ B

0ÐBÑ œ
/
!œ B

] œ 1Ð\Ñ œ \#

 p.d.f.  of      is:]



TÐ] Ÿ CÑ œ TÐ\ Ÿ CÑ#

œ
! C  !
T Ð  C Ÿ \ Ÿ C C   !

œ
! C  !
T Ð\ Ÿ CÑà C   !

œ
!ß C  !

"  / C  !Þ

œ È È
œ È
œ

if
)

if   

 CÈ



4.  Algebraic integration theory.

A new formulation of measure and integration
theory allows for non-commutative probability
and quantum probability as generalizations of
regular probability.

Key element:  fundamental quantities are
random variables (which is what we observe).



Example 1.  Consider the sample space  ofH
possible daily closing price records
Ð ßá ß Ñ= =" $!  over a given month, for Hewlett-
Packard corporation.  We assume
! Ÿ Ÿ "!!=3 $ .

Thus

H = = = =œ Ö œ Ð ßá ß Ñ À ! Ÿ Ÿ "!!× œ Ò!ß "!!Ó Þ" $! 3
$!

For , let  probability that theE § TÐEÑ œH
outcome vector  is in the set .  Thus  is ax E T
measure on .H



There are lots of possible random variables
(functions on ):H

(1)  return .V œ VÐ Ñ œ œ= = =
=

$! !

!



(2)  for given , let" Ÿ . Ÿ $!

< œ < Ð Ñ œ œ Þ
B  B

B
. .

. ."

.
= daily return  



(3)  volatility standard deviation of5 5 =œ Ð Ñ œ œ
returns

œ < 
"

#*

ÍÍÍÌ �� �
.œ"

$!

.
#.

with . . =œ Ð Ñ œ < Þ"
$!

.œ"

$!

.�
Many other financial metrics:
(4) Sharpe ratio œ ÞVÐ Ñ

Ð Ñ
=

5 =



Common point: these are all functions on the
fundamental probability (measure) space  onT
HÞ

Note these and all other observables are
functions on , i.e., random variables.H



5.  Expectations.

Note: we are really interested in random variables
\Ð Ñ=  on  rather than  itself.H H

Given a random variable (RV)  or ,\Ð Ñ À Ä= H ‘ ‚
we define its (or average value) toexpectation 
be

IÐ\Ñ œ \Ð Ñ. Ð Ñ(
H

= . =

[standard def. of average of a function; recall
. HÐ Ñ œ "].



Consider the space  of all bounded randomB
variables  on .  Note this is a Banach\Ð Ñ= H
space  with norm  P Ð Ñ m\Ð Ñm œ \Ð Ñ∞

−
H = =ess sup

= H

[i.e. the maximum not counting sets of measure
0].

But it is also an algebra since if  and \Ð Ñ ] Ð Ñ= =
are bounded random variables then so is
\Ð Ñ] Ð Ñ= = .



[Note all definitions complex vector spaces also
work for real vector spaces below]

Definition 2.  An is a complex vectoralgebra  A
space with multiplication defined on it, i.e. for
\ß] − ß \] −A A is defined and satisfies

  (i)  \Ð]  ^Ñ œ \] \^
  (ii) Ð]  ^Ñ\ œ ]\  ^\

Definition 3.  A  is a BanchBanach algebra B 
space with the additional structure of an
algebra such that  form\] m Ÿ m\mm] m
\ß ] − B.



We will show that the structure of all random
variables  on a probability space  will be\Ð Ñ= H
determined by their structure as a Banach
algebra, together with knowing only their
expectations.



Definition 4.  An  on an algebra  is ainvolution A
map  that is a conjugate linear\ Ä \‡

isomorphism, i.e., for  and \ß] − - − ßA ‚

  (i) Ð-\Ñ œ -\‡

  (ii) \ œ \‡‡

  (iii) Ð\  ] Ñ œ \  ]‡ ‡ ‡

  (iv) Ð\] Ñ œ ] \ Þ‡ ‡ ‡



Definition 5.  An  is a systemintegration algebra
Ð ß I ÑA A, *  in which  is a complex associative
algebra (i.e. * is anÐ\] Ñ^ œ \Ð] ^ÑÑß
involution on , and  is anA AI À Ä ‚
expectation, i.e.

  (i)  IÐ\ Ñ œ IÐ\Ñ‡

  (ii)  IÐ\ \Ñ   !‡

  (iii) IÐ\] Ñ œ IÐ] \Ñ
  (iv) ,lIÐ\ ] \Ñ Ÿ -Ð] ÑIÐ\ \Ñ‡ ‡

where  is positive and depends only on .-Ð] Ñ ]



Example 2.  Consider the algebra of all bounded
random variables  on a probability\Ð Ñ=
(measure) space .  With the normH
m\m œ m\Ð Ñm= ∞, this forms a Banach algebra
B.

If , we can define  (i.e.\ œ \Ð Ñ − \ œ \Ð Ñ= =B ‡

complex conjugate) to be our involution.

We an define our expectation to be



IÐ\Ð ÑÑ œ \Ð Ñ.T Ð Ñ= = =( .

[can show has above properties of
expectation].

Note this algebra is , i.e. .commutative \] œ ]\

Definition 6.  The  of  is the collectionspectrum B
of all (nonzero) continuous linear functionals
9 ‚À ÄB   which are multiplicative, i.e., such
that



9 9 9Ð\] Ñ œ Ð\Ñ Ð] Ñ.



6.  The algebra of random variables
determines the probability structure

Theorem 2.  Assume we are given a probability
space  and any algebra  of boundedH A
random variables on , thus forming a naturalH
integration algebra , .  Then theÐ Iß ‡ÑA
structure of this integration algebra uniquely
determines  and the family of randomH
variables , up to isomorphism.A

Proof:  We need to show that if two measure
spaces  with their own specific algebrasH H" #ß



A A" #ß  of functions have the same integration
algebra structures, so that  andÐ ß I ß ‡ ÑA" " "

Ð ß I ß ‡ ÑA  # # # are isomorphic as algebras, then
the two spaces  and  are equivalent asH H" #

measure spaces.  We also need to show that
the corresponding families  and  areA A" #

equivalent as families of functions on these two
spaces.

So assume we have two measure spaces  withH3

algebras of functions  on them.  Assume thatA3

as integration algebras  areÐ I ß ‡ ÑA3 3 3ß
isomorphic.  This means that there is a



bijective isomorphic mapping ,Y À A A" #Ä
such that for \ß\ ß\ − ß" # "A

  (1) YÐ+ \  + \ Ñ œ + YÐ\ Ñ  + YÐ\ Ñ" " # # " " # #

  (2) YÐ\ Ð Ñ\ Ð ÑÑ œ YÐ\ Ð ÑÑQÐ\ Ð ÑÑ" # " #= = = =
  (3) I ÐQ\Ñ œ I Ð\ÑÞ# "

  (4) ÐY\Ñ œ YÐ\ Ñ‡ ‡

We then need to show that  and  areH H" #

equivalent as measure spaces and  and A A" #

are equivalent as families of functions on these
two spaces.



To do this we will find a measure preserving
mapping  such that for ,X À Ä \ −H H" # "A

Y\Ð Ñ œ \ÐX ÑÞ= =

We will show that this mapping gives the
equivalence between  as families ofÐ ß ÑH3 3A
measureable functions.

To find such a mapping , first consider a setX
I § H".  Let



; =
=

IÐ Ñ œ
" − E
!œ otherwise 

be the characteristic function of Then note thatIÞ
; = ; =I
#

IÐ Ñ œ Ð Ñ, so

ÐQ Ñ œ QÐ Ñ œ QÐ Ñ œ Q Þ; ; ; ;I I I
# #

I

Thus  is the characteristic function of aQ;I

set, call it XÐIÑÞ

7.  Next:  Quantum (free) probability.




