7. Random variables as observables

Definition 7. A random variable (function) **X** on a probability measure space is called an observable

Note all functions are assumed to be measurable henceforth.

Note that if $(\Omega, \mathcal{F}, \mathbb{P})$ is a probability space, then the family of (essentially) bounded random variables (functions on Ω) $X(\omega)$ has the structure of an integration algebra (**A**, *E*), with

$$E(X) = \int X(\omega) d\mathbb{P}(\omega).$$

In probability we interpret Ω as the space of all possible outcomes, and for each outcome ω , we define $X(\omega)$ to be the value of the observable X given the outcome $\omega \in \Omega$.

We can call $X(\omega)$ an observable.

We may study the integration algebra directly, since it determines the structure of the probability space up to isomorphisms (measure-preserving transformations).

Note that the algebra **A** of observables is commutative, since $X(\omega)Y(\omega) = Y(\omega)X(\omega)$. Generalization: Consider that in quantum mechanics observables also form an algebra which is more general, since it is noncommutative. But each observable still has an expected value.

Example 3. Consider the motion of a particle on the line \mathbb{R}^1 . Let $\mathcal{H} = L^2(\mathbb{R})$. If $\psi(x) \in \mathcal{H}$ and $\|\psi\| = 1$ then ψ represents a *probability amplitude* that particle is located at x. Also $|\psi(x)|^2$ represents the probability that particle is located at x.

The operator $B = M_x$ (multiplication by x) on $L^2(\mathbb{R})$ is the *position operator*. If particle is in state $\psi(x)$, then its expected position is

$$\langle \psi, B\psi \rangle = \int_{-\infty}^{\infty} dx \,\overline{\psi}(x) B\psi(x) = \int_{-\infty}^{\infty} dx \,\overline{\psi}(x) M_x \psi(x)$$

$$= \int_{-\infty}^{\infty} \overline{\psi}(x) x \psi(x) dx = \int_{-\infty}^{\infty} x |\psi(x)|^2 dx$$

The operator $C = \frac{1}{i} \frac{\partial}{\partial x}$ (differentiation with respect to x) on $L^2(\mathbb{R})$ is the *momentum operator*. The expected momentum is

$$\langle \psi, C\psi \rangle = \int_{-\infty}^{\infty} dx \,\overline{\psi}(x) \frac{1}{i} \frac{\partial}{\partial x} \psi(x)$$

$$= -i \int_{-\infty}^{\infty} dx \, \overline{\psi}(x) \psi'(x).$$

Generally any observable quantity corresponds to a self-adjoint operator A on \mathcal{H} , and its expectation value (in a given state $\psi \in \mathcal{H}$) is

$$E(A) = \langle \psi, A\psi \rangle.$$

8. Random variables as observables, II

We now view a random variable $X(\omega)$, $\omega \in \Omega$ as having a value for each outcome in the universe Ω of outcomes. In other words, Xhas a value for each of the possible 'worlds' (possible ω representing our reality) that we are in.

We have seen that just know expectation values of an algebra of random variables on Ω is sufficient to determine the structure of Ω .

Henceforth we will focus on the algebra structure of the (bounded) random variables $\mathbf{A} = \{X(\omega) : X \text{ is a RV on } \Omega\}.$

Now consider $\mathcal{H} = L^2_{\mathbb{C}}(\Omega)$. If $\psi(\omega) \in \mathcal{H}$, then $\rho(\omega) = |\psi^2(\omega)| \in L^1_{\mathbb{R}}(\Omega)$, and represents a probability distribution on the possible outcomes $\omega \in \Omega$. If $X \in \mathbf{A}$, then in probability

$$E(X) = \int_{\Omega} X(\omega) \rho(\omega) d\omega$$

$$= \int_{\Omega} \overline{\psi}(\omega) X(\omega) \psi(\omega) dP(\omega)$$

$$= \langle \psi(\omega), X(\omega)\psi(\omega) \rangle = \langle \psi, X\psi \rangle.$$

Thus we can interpret a state $\psi(\omega)$ to be a probability distribution $\rho(\omega) = |\psi(\omega)|^2$ on Ω .

It represents our current knowledge of the world as a probability distribution $\rho(\omega)$ on Ω .

9. An alternative interpretation of $\psi(\omega)$

Note that if we have a state ψ , it forms a linear functional ϕ on the set of observables $X \in \mathbf{A}$. Specifically, define

$$\phi(X) = E_{\psi}(X) = \int X(\omega) |\psi|^2(x) dP(\omega) = \langle \psi, X\psi \rangle.$$

Thus a state ψ can be interpreted as a linear functional $\phi : \mathbf{A} \to \mathbb{C}$.

Definition 8. More generally, we will define a state to be any bounded linear functional ϕ on **A**.

10. Summary of commuting observables

So far we have showed that studying an algebra A of random variables on a probability space Ω is entirely equivalent to knowing the algebra structure of A, i.e. knowing XY and aX + bY (for $a, b \in \mathbb{C}$) if we know X and Y.

We call the algebra **A** of observables *commuting* because XY = YX if $X, Y \in \mathbf{A}$.

We have seen that if $\psi(\omega) \in L^2(\Omega)$, then $|\psi|^2(\omega) \in L^1(\Omega)$ and represents a *new* probability distribution on Ω .

Note that the expectation with respect to this new distribution is

$$E_{\psi}(X) = \int_{\Omega} X(\omega) \underbrace{|\psi|^2(\omega)dP(\omega)}_{P_{\psi}(\omega)}.$$

Note that this is equivalent to definining a new measure on Ω

$$P_{\psi} = |\psi|^2(\omega) dP(\omega),$$

i.e., Radon-Nikodym derivative

$$\frac{dP_{\psi}}{dP} = |\psi|^2(\omega).$$

We have defined the state ψ through its expectation E_{ψ} above as a linear functional on $X \in \mathbf{A}$.

More generally, we have now defined a state as any linear functional $\phi : \mathbf{A} \to \mathbb{C}$.

But note that this E_{ψ} is an *expectation* on the algebra **A** of random variables (i.e. satisfies the 4 properties defined earlier).

Thus we have a **Proposition.** Given a probability space Ω , an algebra **A** of random variables on Ω , and $\psi(\omega) \in L^2(\Omega)$ with $\|\psi\| = 1$, there is a unique expectation E_{ψ} defined on **A** given by

$$E_{\psi}(X) = \int_{\Omega} X(\omega) |\psi|^2(\omega) dP(\omega).$$

Note that this expectation can be interpreted as giving the average value of any observable X given the underlying state ψ on Ω .

11. Non-commuting observables

Recall from above we have an algebra **A** of observables *X* together with an expectation *E* on the algebra (we denote $E = E_{\psi}$ for now). These form a *integration algebra* defined above.

We define the total measure of the integration algebra to be E(1) (i.e. expectation of the function X = 1).

If E(1) = 1 (i.e. total measure is 1) we will call **A** a *probability algebra.*

Thus a probability algebra **A** is just a generalization of the collection of random variables on a probability space Ω .

Let's generalize the above ideas to the case where observables do not commute, i.e. we have an algebra **A** of observables where $XY \neq YX$.