Lecture 5.

1. Abstract Measure Theory

Recall: A collection \mathcal{A} of subsets of a set M is a σ-field (or σ-algebra) if

(i) $A_i \in \mathcal{A} \Rightarrow \bigcup_{i=1}^{\infty} A_i \in \mathcal{A}$

(ii) $A \in \mathcal{A} \Rightarrow \sim A \in \mathcal{A}$

(iii) $M \in \mathcal{A}$

Def 1: A measure μ on the σ-field \mathcal{A} assigns a "size" $\mu(A)$ to each $A \in \mathcal{A}$, such that

(i) $\mu(\emptyset) = 0$

(ii) $\mu\left(\bigcup_{i=1}^{\infty} A_i\right) = \sum_{i=1}^{\infty} \mu(A_i)$ if A_i disjoint

(countable additivity)

$(M, \mu) = \text{measure space}$

Def 2: μ is a σ-finite measure on set M if

$M = \text{countable union of sets } A_i \text{ with } \mu(A_i) < \infty \forall i.$

[We'll always assume μ σ-finite; otherwise things get too big].

Def 3: If $M = \text{measure space and } f : M \rightarrow \mathbb{R}, f \text{ is measurable }$ if

$f^{-1}((a, b)) = \text{measurable set } \forall \text{ intervals } (a, b)$.

As before, define

$$\int f(x) d\mu = \lim_{n \rightarrow \infty} \sum_{m} \mu\left(f^{-1}\left(\frac{m}{n}, \frac{m+1}{n}\right)\right) \frac{m}{n}$$

i.e., integral of function identical to Lebesgue integral on \mathbb{R}, using μ a new measure on M.

\Rightarrow get
Monotone Convergence Theorem\hspace{1cm} Stated and proved

Dominated Convergence Theorem\hspace{1cm} exactly as in use of

Riesz-Fisher theorem\hspace{1cm} Lebesgue measure.

\[L^1(M) = \{ f : \int |f(x)|d\mu < \infty \} \]

[unless specified, integral always means over whole space]

2. Multiple integrals:

Let \((M, \mu)\) and \((N, \nu)\) be measure spaces. Define the product set

\[M \times N = \{(x, y) : x \in M, y \in N\}. \]

Let \(\mathcal{A}(M) = \sigma\)-field of sets on \(M\) on which \(\mu\) defined

\(\mathcal{A}(N) = \sigma\)-field of sets on \(N\) on which \(\nu\) defined

Define \(\mathcal{A}(M) \times \mathcal{A}(N) = \text{smallest } \sigma\)-field on \(M \times N\) which contains all product sets of the form

\[A \times B = \{(a, b) : a \in A, b \in B\} \]

with \(A \in \mathcal{A}(M), B \in \mathcal{A}(N)\).

Theorem: There exists a unique measure \(\mu \times \nu\) on \(\mathcal{A}(M) \times \mathcal{A}(N)\) with the property

\[(\mu \times \nu)(A \times B) = \mu(A)\mu(B)\]

for \(A \in \mathcal{A}(M), B \in \mathcal{A}(N)\).

Def: The measure \(\mu \times \nu\) is the product measure of \(\mu\) and \(\nu\).

Fubini's theorem: If \(f(x, y)\) = measurable function on \(M \times N\), then

\[\int_M d\mu(x) \left(\int_N d\nu(y) f(x, y) \right) = \int_{M \times N} d(\mu \times \nu) f(x, y) \]
if any of these three integrals converges absolutely.

Ex 1: $M = N = \mathbb{R}$; $\mu = \nu = \text{Lebesgue measure}$. Then
\[
\int d\mu(x) \left(\int d\nu(y) f(x, y) \right) = \int d\nu(y) \int d\mu(x) f(x, y) = \int d\mu(x) \int d\nu(y) f(x, y)
\]
allowing interchange of order of integration.

3. **Singular measures:**

Def 4: Two measures μ, ν on space M are *mutually singular* if \exists a set A such that $\mu(A) = 0$ and $\nu(\sim A) = 0$

[i.e., ν lives on A, μ lives on $\sim A$; supported in different locations]

Def 5: ν is *absolutely continuous* w.r.t. μ if $\nu(A) = 0$ whenever $\mu(A) = 0 \quad \forall A \in \mathcal{A}$.

[compare with Lebesgue definitions — these are extensions]

[Following theorem connects above definition of absolute continuity with absolute continuity w.r.t. Lebesgue measure, mentioned earlier.]

4. **Radon-Nikodym Theorem:**

ν is absolutely continuous w.r.t. μ iff
\[
\nu(A) = \int_A f(x) \, d\mu
\]

for some measurable $f(x)$ and $\forall A \in \mathcal{A}$.

Lebesgue Decomposition Theorem carries over here (with appropriate generalizations of notion of singular and absolutely continuous measures).
5. \(\frac{2}{3} \) Arguments:

Ex:

Theorem: Let \(V = C[a, b] \). For \(f \in V \), let

\[
\|f\|_\infty = \sup_{x \in [a, b]} |f(x)|.
\]

[can easily check that \(\| \cdot \|_\infty \) is norm]

Then \(V \) is complete as a metric space.

Proof: Must show that if \(f_n \in V \) are a Cauchy sequence, then \(f_n \)
\(\rightarrow_{\infty} f \), where \(f \in V \).

Let \(\{ f_n \}_{n=1}^{\infty} \) be Cauchy. Then \(\forall \epsilon > 0 \), \(\|f_n - f_m\|_\infty < \epsilon \) for \(n, m \)
sufficiently large, i.e., \(\sup_{x \in [a, b]} |f_n(x) - f_m(x)| < \epsilon \) for sufficiently large \(n, m \).

Fix \(x \in [a, b] \). Then

\[
|f_n(x) - f_m(x)| < \epsilon
\]

for sufficiently large \(n, m \) i.e., \(\{ f_n(x) \}_{n=1}^{\infty} = \) Cauchy sequence of numbers [now for fixed \(x \)].

Thus, since \(\mathbb{R} \) complete, for each \(x \)

\[
f_n(x) \xrightarrow{n \to \infty} \text{something, call it } f(x).
\]

Will show: \(\|f_n(x) - f(x)\|_\infty \xrightarrow{n \to \infty} 0 \).

Let \(\epsilon > 0 \); let \(N \) be such that for \(n, m \geq N \)

\[
\Rightarrow \|f_n - f_m\| < \epsilon.
\]

Thus, if \(m > N \) is fixed,

\[
\|f - f_m\|_\infty = \sup_{x \in [a, b]} |f(x) - f_m(x)|
\]
\[
= \sup_{x \in [a,b]} \lim_{n \to \infty} |f_n(x) - f_m(x)|
\]

\[
\leq \sup_{x \in [a,b]} \sup_{n > N} |f_n(x) - f_m(x)|
\]

[since a limit of sequence of numbers always \(\leq \) their sup]

\[
= \sup_{n > N} \sup_{x \in [a,b]} [f_n(x) - f_m(x)]
\]

[since suprema are commutative]

\[
= \sup_{n > N} \| f_n - f_m \|_{\infty} < \epsilon.
\]

\[\Rightarrow \| f - f_m \| \to 0\]

\[\Rightarrow f_m \to f\]

[Thus, the Cauchy sequence does converge to \(f \). But is \(f \in C[a, b] \)?]

Need: [done after this Lemma]

Lemma. If \(f_n(x) \) are continuous on \([a, b]\) and \(\| f_n - f \|_{\infty} \to 0 \), then \(f \) is continuous.

Pf: To show \(f \) is continuous, we'll use \(\epsilon-\delta \) definition.

Let \(x \in [a, b] \); pick \(\epsilon > 0 \). Want \(\delta > 0 \) such that if
\[
|x - y| < \delta \Rightarrow |f(x) - f(y)| < \epsilon.
\]

To find \(\delta \), pick \(n \) such that
\[
\| f_n - f \|_{\infty} < \epsilon/3.
\]

Since \(f_n \) continuous, pick \(\delta \) such that
\[
|x - y| < \delta \Rightarrow |f_n(x) - f_n(y)| < \frac{\epsilon}{3}.
\]

Thus, if \(|x - y| < \delta \),

40
\[|f(x) - f(y)| = |f(x) - f_n(x) + f_n(x) - f_n(y) + f_n(y) - f(y)| \]
\[
\leq |f(x) - f_n(x)| + |f_n(x) - f_n(y)| + |f_n(y) - f(y)| < \frac{\epsilon}{3} + \frac{\epsilon}{3} + \frac{\epsilon}{3} = \epsilon .
\]

\[\Rightarrow \quad f(x) \text{ is continuous.} \quad \square \]

6. Hilbert Space

[Recall \(\mathbb{C} = \) complex numbers]

Def: Let \(V \) be a complex vector space (i.e., if \(v \in V \) and \(c \in \mathbb{C} \), \(cv \) defined).

Assume that \(\forall x, y \in V \), there is a number
\[\langle x, y \rangle \in \mathbb{C}. \]

[called an inner product]

such that

(a) \(\langle x, x \rangle \geq 0 \) \quad (\langle x, x \rangle = 0 \iff x = 0)
(b) \(\langle x, y + z \rangle = \langle x, y \rangle + \langle x, z \rangle \)
(c) \(\langle x, \alpha y \rangle = \alpha \langle x, y \rangle \)
(d) \(\langle x, y \rangle = \overline{\langle y, x \rangle} \)

where \(\overline{\cdot} \) denotes complex conjugate, i.e., \(\overline{(a + bi)} = a - bi \).

Then \(V \) is an inner product space (IPS) [note \(\langle \cdot, \cdot \rangle \) is like a dot product]

Ex: Let \(V = \{(a_1, a_2, a_3) : a_i \in \mathbb{C}\} \)

[3 - d vector space]

\[\Rightarrow \quad \text{let } v_1 = (a_1, a_2, a_3) \]
\[v_2 = (b_1, b_2, b_3) \]
\[\Rightarrow \langle v_1, v_2 \rangle = \sum_{i=1}^{3} a_i b_i. \]

[can check it's an inner product space]

Ex: Let \(V = C[0, 1] \).

Then if \(f_1, f_2 \in V \),
\[\langle f_1, f_2 \rangle = \int_0^1 f_1(x)f_2(x)dx. \]

[again can check properties of inner product]

Def: If \(V \) is an IPS, \(x, y \in V \) are **orthogonal** if \(\langle x, y \rangle = 0 \).

[perpendicularity]

Def: If \(\{x_i\}_{i=1}^k \subset V \) (\(k \) can be \(\infty \)) is a set of vectors which are orthogonal to each other and such that \(\langle x_i, x_i \rangle = 1 \ \forall i \), the \(x_i \) are called an **orthonormal set** of vectors.

Def: For a vector \(v \in V \), define
\[\|v\| = \sqrt{\langle v, v \rangle}. \]

Theorem: Let \(\{x_i\}_{i=1}^k \) be an orthonormal set (\(k < \infty \)). Then \(\forall x \in V \),
\[\|x\|^2 = \sum_{i=1}^{k} |\langle x, x_i \rangle|^2 + \left\| x - \sum_{i=1}^{k} \langle x, x_i \rangle x_i \right\|^2 \]

[Proof in R&S. See it!]

Corollary (Bessel inequality): Let \(\{x_i\}_{i=1}^k \) (\(k < \infty \)) be an orthonormal set in \(V \). Then \(\forall x \in V \),
\[\|x\|^2 \geq \sum_{i=1}^{k} |\langle x, x_i \rangle|^2 \]

Pf: Clear from theorem.

Corollary (Schwarz inequality):

\[|\langle x, y \rangle| \leq \|x\| \|y\| \quad \forall x, y \in V \]

Pf: Simple - in R & S.

Theorem: If \(V \) is an IPS, and

\[\|x\| = \sqrt{\langle x, x \rangle} , \]

then \(V \) with norm \(\|x\| \) satisfies the properties of being a normed linear space.

Pf: Straightforward computations.

Thus, we also have metric

\[\rho(x, y) = \|x - y\| = \sqrt{\langle x - y, x - y \rangle} \]

[We know this is a metric on any NLS, so it must be here too]