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Machine Learning and Kernel Methods

Machine Learning
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1.  The problem:  Learning theory

Given an unknown function  learn .0Ð Ñ À Ä ß 0Ð Ñx x‘ ‘8

Example 1:  x is retinal activation pattern (i.e., activation level ofB œ3

retinal neuron , and  if the retinal pattern is a chair;3 C œ 0Ð Ñ  !x
C œ 0Ð Ñ  !x  otherwise.

[Thus: want concept of a chair]

Given:  examples of chairs (and non-chairs): , togetherx x x" # 8ß ßá ß
with proper outputs This is the information:C ßá ß C Þ" 8

R0 œ Ð0Ð Ñßá ß 0Ð ÑÑx x" 8
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Goal:  Give best possible estimate of the unknown function , i.e., try0
to learn the concept  from the examples .0 R0

But:  given pointwise information about  not sufficient:  which is the0
"right"  given the data  below?0ÐBÑ R0

(a)
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(b)

[How to decide?]

2.  Regularization methods for choosing 0

Finding  from  is an :  the operator  does not0 R0 Rill-posed roblem "

exist because  is not one to one.R

Need to combine both:

(a)  Data R0
(b)  A priori information, e.g., "  is smooth", e.g. expressing a0
preference for (b) over (a) above.

How to incorporate?  Using Tikhonov regularization methods.

We introduce a representingregularization loss functional L  Ð0Ñ
penalty for choice of an "unrealistic"  such as that in (a) above.0

Assume we want to find the correct function from data0 Ð Ñß! x

R0 Ð Ñ œ Ð0 Ð Ñßá ß 0 Ð ÑÑ œ ÐC ßá ß C Ñ! ! " ! 8 " 8x x x

Suppose we are given  as a candidate for approximating 0ÐBÑ 0 Ð ÑÞ! x
We score  as a good or bad approximation based on a combination0
of its error on the known points , together with its "plausibility",Ö ×x3 3œ"

8

i.e., how low
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/ œ Z Ð0Ð Ñß C Ñ  PÐ0Ñ
"

8
"
3œ"

8

3 3x

is.  Here  is a measure of the loss whenever ,Z Ð0Ð Ñß C Ñ 0Ð Ñ Á Cx x3 3 3 3

e.g.

Z Ð0Ð Ñß C Ñ œ l0Ð Ñ  C l Þx x3 3 3 3
#

And  measures the  i.e., a measure of discrepancyPÐ0Ñ a priori loss,
between the prospective choice  and our prior expectation about .0 0

Example:

PÐ0Ñ œ mE0m ßP
#

#

where  andE0 œ  0  0?

mE0m œ lE0Ð Ñl .P
# #

#
8

(
‘

x xß

which measures the degree of non-smoothness that  has (i.e., we0
prefer smoother functions a priori).

Example 2:  Consider the case  above.  The normPÐ0Ñ œ mE0m#

m0m œ mE0m[ P#

= (at least if dimension  isreproducing kernel Hilbert space norm  .
small).

If this is the case, in general things become easier.

In fact this norm comes from an inner product,

Ø0 ß 1Ù œ ØE0ßE1Ù œ . E0Ð ÑE1Ð ÑÞ[ P# ( x x x

Example 3:  In the case ,  .0 œ 0ÐBÑ B − ‘"

Suppose we choose:
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E0 œ  0  0 œ   " 0ß
. .

.B .B

# #

# #Œ 
we have

PÐ0Ñ œ mE0m œ   " 0 .Bß
.

.B
#

#

#

#( ” •Œ 
and  is a measure of "lack of smoothness" of .mE0m 0

3.  Reproducing Kernel Hilbert spaces:

Recall:

Definition 1.  A  matrix  is symmetric if  for all8 ‚ 8 Q Q œ Q 3ß 4Þ34 43

A symmetric  is if all of its eigenvalues are non-negative.Q positive 
Equivalently

Ø ßQ Ù ´ Q   !a a a aX

for all vectors , with ,  the standard inner product ona œ Ø † † Ù

+
+
ã
+

Ô ×Ö ÙÖ Ù
Õ Ø

"

#

8

‘8 X
" 8.  Above  is the transpose of .a aœ Ð+ ßá ß + Ñ

Definition 2:   A (real)   isreproducing kernel Hilbert space (RKHS) [
a Hilbert space of real-valued functions on a compact Hausdorff
space  with the property that given , the evaluation functional\ − \x
x‡ À Ä[ ‘ defined by

x x‡Ð0Ñ œ 0Ð Ñ

is a bounded linear functional on , i.e., [ x‡ ‡− \ Þ

Definition 3:  We define a to be a function kernel O À \ ‚\ Ä ‘
which is symmetric, i.e.,

OÐ ß Ñ œ OÐ ß ÑÞx y y x
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We say that  is if for any collectionO positive 

Ö ßá ß × § \x x" 8 ,

the  matrix8 ‚ 8

O œ ÐO Ñ ´ OÐ ß Ñ34 3 4x x

is positive as an operator on the Hilbert space , i.e.,‘8

ØO ß Ù   !a a

for , .  Equivalently the matrix  is positive as a matrix.a a− Á O‘8 !

We now have the representer theorem:

Theorem 1:  Given an RKHS  of functions on , there exists a[ \
unique symmetric positive definite kernel  such that for OÐ ß Ñ 0 − ßx y [

0Ð Ñ œ Ø0Ð † ÑßOÐ † ßx xÑÙ Þ[

Proof:  ( )  for any , since  is a continuous linear functionalÊ − \x x‡

on , by the Riesz representation theorem there exists a fixed[
function  such that for O Ð † Ñ 0 −x [

0Ð Ñ œ Ð0Ñ œ Ø0Ð † ÑßO Ð † ÑÙÞx x‡
x (1)

(all inner products are in ).[

That is, evaluation of  at  is equivalent to an inner product with the0 x
function .Ox

We define  Note by (1) we have:OÐ ß Ñ œ O Ð ÑÞx y yx

ØO Ð † ÑßO Ð ÑÙ œ O Ð Ñ œ O Ð Ñx y y x† x y ,

so  is symmetric.OÐ ß Ñx y

To prove  is positive, note:  if , then OÐ ß Ñ O œ OÐ ß Ñ O œ ÐO Ñx y x x34 3 4 34

is a matrix with
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ØO ß Ù œ - - OÐ ß Ñ œ - - ØO Ð † ÑßO Ð † ÑÙc c x x" "
3ß4œ" 3ß4œ"

8 8

3 4 3 4 3 4 x x3 4

œ - O Ð † Ñß - O Ð † Ñ œ - O Ð † Ñ   !¤ ¥ ¾ ¾" " "
3œ" 4œ" 3ß4œ"

8 8 8

3 4 4

#

x x x3 4 4

[

.   

Definition 4:  We call the above kernel  the OÐ ß Ñx y reproducing
kernel of .[

Definition 5:  We define a to be positive definite kernelMercer kernel 
OÐ ß Ñx y  which is also continuous.

Theorem 2:
(i) For every Mercer kernel , there exists a unique O À \ ‚\ Ä ‘
Hilbert space  of functions on  such that  is its reproducing[ \ O
kernel.
(ii)  Moreover,  consists of continuous functions, and for [ [0 −

m0m Ÿ Q m0m_ O [,

where Q œ OÐ ß ÑÞO
ß −\
sup

x y
x y

Proof:  Let  be a Mercer kernel.  We willOÐ ß Ñ À \ ‚\ Äx y ‘
construct a reproducing kernel Hilbert space  with reproducing[
kernel  as follows.O

Define

[! −\œ ÖO Ð † Ñ× Þspan   x x

Define inner product  on  forØ0 ß 1Ù[!
[!

0Ð † Ñ œ + O Ð † Ñß 1Ð † Ñ œ , O Ð † ÑÞ" "
3œ" 3œ"

6 6

3 3x x3 3

(Note we may assume  both use same set  since if not we0 ß 1 Ö ×x3

may take a union without loss).
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Then define

Ø0Ð † Ñß 1Ð † ÑÙ œ + OÐ ß † Ñß , OÐ ß † Ñ¤ ¥" "
3œ" 4œ"

6 6

3 3 4 4x x

œ + + ØOÐ ß † ÑßOÐ ß † ÑÙ œ + , OÐ ß ÑÞ" "
3ß4œ" 3ß4œ"

6 6

3 4 3 4 3 4 3 4x x x x

Easy to check that with this  is an inner product space.  Now form[!

the completion of this space into the Hilbert space   Note that for[Þ

0 œ + O Ð † Ñ"
3

3 x3

as above the norm

l0 Ð Ñl œ Ø0Ð † ÑßOÐ ß † ÑÙ Ÿ m0Ð † Ñm mOÐ ß † Ñmx x x[ [ [

œ m0m ØOÐ ß † ÑßOÐ ß † ÑÙ[
È x x

œ m0m OÐ ß Ñ[
È x x

Ÿ Q m0m ÞO [

This shows that the imbedding  (the continuousM À Ä GÐ\Ñ[!

functions) is continuous.  Thus any Cauchy sequence in  is also[!

Cauchy in , and so it follows easily that the completion  of GÐ\Ñ [ [!

exists as a subset of .GÐ\Ñ

That  is a reproducing kernel for  follows by approximation fromO [
[!Þ

4.  An example: Sobolev smoothing

Recall we used
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PÐ0Ñ œ mE0m œ   " 0 .B
.

.B
#

#

#

#( ” •Œ  .

Generalize this:

Basic definitions:  Recall the Laplacian operator  on a function?

0Ð Ñ œ 0ÐB ßá ß B Ñx " .

is defined by

?0 œ 0 á  0Þ
` `

`B `B

# #

"
# #

.

For  an even integer, we can define the Sobolev space  by:=  ! L=

L œ Ö0 − P Ð Ñ À Ð"  Ñ 0 − P Ð Ñ×= # . =Î# # .‘ ? ‘

to be functions in  which are still in after taking theP Ð Ñ P# . #‘
derivative .Ð"  Ñ? =Î#

More specifically: we define the operator (when it exists)

Ð  "Ñ 0 ´ Ðl l  "Ñ 0Ð Ñs? Y ==Î# " # =Î#’ “= (2)

Note that when even integer and  sufficiently differentiable than= œ 0
the RHS of (2) coincides with the standard definition of the left hand
side

For  define the new inner product0 ß 1 − L=

Ø0 ß 1Ù œ ØÐ  "Ñ 0 ß Ð  "Ñ 1Ù ÞL
=Î# =Î#

P= #? ?

œ ØÐl l  "Ñ 0Ð Ñß Ðl l  "Ñ1Ð ÑÙ Þs s= # =Î# #
P= = = #

Can show that  is an RKHS with reproducing kernelL=
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OÐ Ñ œ
"

Ðl l  "Ñ
z Y"

# =Œ 
=

(3)

where  denotes the inverse Fourier transform.  The functionY"

"
Ðl l "Ñ " .

.
= # =  is a function on  where= œ Ð ßá ß Ñ − ß= = ‘

l l œ á  Þ= # # #
" .= =

Fig 1:   in one dimension - a smooth kernelOÐ Ñz

OÐ Ñz  is called a radial basis function.

Note:  the kernel  (as function of 2 variables) is defined inOÐ ß Ñx y
terms of above  byO

OÐ ß Ñ œ OÐ  ÑÞx y x y

We thus have following Sobolev norm, measuring smoothness (with =
an even integer):

m0m œ mÐ  "Ñ 0m œ mÐl l  "Ñ 0Ð Ñm Þs
L

=Î# # =Î#
P P= # #? == (1)

We claim that the space  of functions is a reproducing kernelL=

Hilbert space.  Indeed, if we choose  by theOÐ ß Ñ œ OÐ  Ñx y x y
property
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OÐ Ñ œ
"

Ð# Ñ Ðl l  "Ñ
z Y

1 =
"

.Î# # =Œ  (3)

(notice we have  and not  in the exponent).  We claim that= =Î#
OÐ ß Ñ œ OÐ  Ñx y x y  is a reproducing kernel for this space.

To see this note that if , then letting 0 − L E œ Ð  "Ñ À= = =Î#?

Ø0Ð † ÑßOÐ  ÑÙ œ ØE 0Ð † Ñß E OÐ  † ÑÙx x† L
= =

P= #

œ ØE 0Ð † Ñß ÐE OÑÐ  † ÑÙ= =
Px #

œ E 0‡E OÐ Ñ œ Ð# Ñ ÐE 0Ñ ÐE OÑ= = " .Î# = =x Y 1 Y Y ‘
œ Ð# Ñ Ðl l  "Ñ 0Ð ÑÐl l  "Ñ OÐ Ñs sY 1" .Î# # =Î# # =Î#’ “= = = =

œ 0Ð Ñ œ 0Ð ÑÞsY"’ “= x

Remark:   We call  a , for reasons we willOÐ Ñz radial basis function
see.  We remark that formally,  this is the Green's function for the
operator   That is, it solves the formal differential equationÐ  "Ñ Þ? =

Ð  "Ñ OÐ Ñ œ Ð ÑÞ? $= z z

Conclusion:  L œ == Sobolev space of  times differentiable functions
in  is a reproducing kernel Hilbert space, and its reproducing kernelP#

is  given in (3) above.  This kernel is also (informally) theOÐ Ñz
Green's function for the operator Ð  "Ñ Þ? =

The Representation Theorem for RKHS

1.  An application:  using Sobolev spaces for regularization

Assume again we have an unknown function  on , with only data0 \
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R0 œ ´ ÐC ßá ß C Ñ œ Ð0Ð Ñßá ß 0Ð ÑÑÞy x x" 8 " 8

To find , approximate it by the minimizer0!

0 œ mR0  m  m0m Þs arg min
0−L

# #
L

=
=˜ ™y - (4)

where  can be some constant.  Note we are finding an  which- 0
balances minimizing

mR0  m œ Ð0Ð Ñ  C Ñ ß
"

8
y x# #

3œ"

8

3 3"
i.e., the data error, with minimizing , i.e., maximizing them0m#L=

smoothness.  The solution to such a problem will look like this:

It will compromise between fitting the data (which may have error)
and trying to be smooth.

The amazing thing:   can be found explicitly using radial basis0s

functions.

2.  Solving the minimization

Now consider the optimization problem (4).  We claim that we can
solve it explicitly.  To see this works in general for RKHS, return to
the general problem.

Given an unknown RKHS.  Try to find the "best"0 − œ! [
approximation  to  fitting the data ,0 0 R0 ´ Ð0 Ð Ñßá ß 0 Ð ÑÑ œ! ! ! " ! 8x x y
but ALSO satisfying a priori knowledge that  is small.m0 m! [
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Specifically, we want to find

arg min 
0− 3œ"

8

3 3
#

[
[

"

8
Z Ð0Ð Ñß C Ñ  m0m Þ Ð"Ñ" x -

Note we can have, e.g.,   In that caseZ Ð0Ð Ñß C Ñ œ Ð0Ð Ñ  C Ñ Þx x3 3 3 3
#

" "
3œ" 3œ"

8 8

3 3 3 3
# #Z Ð0Ð Ñß C Ñ œ Ð0Ð Ñ  C Ñ œ mR0  m Þx x y

Consider the general case (1), with arbitrary error measure .  WeZ
have the

Representation Theorem:  E solution of the Tikhonov optimization
problem  can be writtenÐ"Ñ

0ÐBÑ œ + OÐ ß Ñß"
3œ"

8

3 3x x (2)

where  is the reproducing kernel of the RKHS .O [

Important theorem:  says we only need to find a set of  numbers 8 +3

to optimize the infinite dimensional problem (1) above.

Proof:   Use calculus of variations.  If a minimizer  exists, then for0"
all , assuming that the derivatives with respect to  exist:1 − [ %

! œ Z ÐÐ0  1ÑÐ Ñß C Ñ  m0  1m
. "

. 8%
% - %"

3œ"

8

" 3 3 "
#x [

œ Ð0 Ð Ñß C Ñ † 1Ð Ñ
" `Z

8 `0 Ð Ñ
"
3œ"

8

" 3
" 3 3 3x x x

 Ø0 ß 0 Ù  # Ø0 ß 1Ù  Ø1ß 1Ù
.

.
- % %

%
˜ ™º" " "

#

œ!%
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œ Z Ð0 Ð Ñß C Ñ † 1Ð Ñ  # Ø0 ß 1Ùß
"

8
"
3œ"

8

" " 3 3 3 "x x -

where  and all inner products are in Z Ð+ß ,Ñ œ Z Ð+ß ,Ñ Þ"
`
`+ [

Since the above is true for all  it follows that if we let 1 − ß 1 œ O[ x
we get:

! œ Z Ð0 Ð Ñß C ÑO Ð Ñ  # Ø0 ßO Ù
"

8
"
3œ"

8

" " 3 3 3 "x xx x-

œ Z Ð0 Ð Ñß C ÑO Ð Ñ  # 0 Ð Ñß
"

8
"
3œ"

8

" " 3 3 3 "x x xx -

or

0 Ð Ñ œ Z Ð0 Ð Ñß C ÑOÐ ß ÑÞ
"

# 8
" " " 3 3 3

3œ"

8

x x x x
-

"
Thus if a minimizer  exists for (1) it can be written in the form (2) as0 ß"

claimed, with

+ œ Z Ð0 Ð Ñß C ÑÞ
"

# 8
3 " " 3 3

-
x

Note that this does not solve the problem, since the  are expressed+3

in terms of the solution itself.  But it does reduce the possibilities for
what a solution looks like.

3.   An example:  square loss

Considering again the case where we have information

R0 œ Ð0Ð Ñßá ß 0Ð ÑÑ œx x y" 8 ,

to find the solution of the regularization problem we wish to find

0 œ Z Ð0Ð Ñß C Ñ  m0m Ð"Ñ
"

8
! 3 3

0− 3œ"

8
#arg inf

[
[" x -
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Plugging in the universal solution

0Ð Ñ œ + OÐ ß Ñx x x"
4œ"

8

4 4

into (1) we get:

0 œ Z + OÐ ß Ñß C  + OÐ ß Ñ Ð"Ñ
"

8
! 4 4 4 4 3

+ ßáß+ 3œ" 4œ" 4œ"

8 8 8 #

arg inf
" 8

" " "  ¾ ¾x x x x-
[

Notice that

¾ ¾" "
4œ" 3œ"

8 8

4 4 3 4 34

#
X+ OÐ ß Ñ œ + + O œ O Þx x a a

[

where , and O œ ÐO Ñ œ ÐOÐ ß ÑÑ œ Þ

+
+
ã
+

34 3 4

"

#

8

x x a
Ô ×Ö ÙÖ Ù
Õ Ø

Thus

0 œ Z + OÐ ß Ñß C  O
"

8
! 4 3 4 3

− 3œ" 4œ"

8 8
Xarg min

a ‘8

 " " x x a a- Þ

This minimizes over  and is finite dimensional minimization+ ßá ß +" 8

problem.  Can take derivatives wrt  and set equal to 0+ Þ3

Special case:  x xZ Ð0Ð Ñß CÑ œ Ð0Ð Ñ  CÑ Þ#

Here

a x x a aœ + OÐ ß Ñ  C  O
"

8
arg min

a− 3œ" 4œ"

8 8

4 3 4 3

#

X

‘8

 " "  -

œ ÐO  Ñ  O Þ
"

8
arg min

a−

# X

‘8

a y a a-

Take the gradient with respect to  and setting to  we get:a !
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! œ OÐO  Ñ  # O œ  # O  O
# #O "

8 8 8
a y a a y- -Œ #

.

œ O  O Þ
O

8 8
Œ - a y

Thus if  is nonsingular:O

a yy
œ  œ O  8 Þ

O

8 8
Œ  Š ‹ a b- -

"
"

Explicit solution.  Thus

0 Ð Ñ œ + OÐ ß Ñ
"

8
! 3 3

3œ"

8

x x x"
= superposition of radial basis functions.
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Support Vector Machines

Microarray experiment:

Question:  Gene expression - when is the DNA in a gene 1
transcribed and thus expressed (as RNA) in a cell?

One solution:  Measure RNA levels (result of transcription)

Method:  Microarray

cDNA arrays:  Spotted onto surface
oligonucleotide arrays: created on surface
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microarray chip

population of
cDNA
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From: "Data Analysis Tools for DNA microarrays" by S. Draghici, published by
Chapman and Hall/CRC Press.
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Affymetrix Agilent Amersham Mergen

Human liver vs. human heart: 3904/22,283 (18%)
Human liver vs. human liver: 3875/22,283 (17%)
Human heart vs. human heart: 4026/22,283 (18%)

Human liver vs. human heart: 6963/14,159 (49%)
Human liver vs. human liver: 5129/14,159 (36%)
Human heart vs. human heart: 1204/18,006 (6%)

Human liver vs. human heart: 8572/11,904 (72%)
Human liver vs. human liver: 2811/11,904 (24%)
Human heart vs. human heart: 3515/11,904 (30%)

Heart replicates Heart replicates Heart replicates Heart replicates

Heart:Liver Heart:Liver Heart:Liver Heart:Liver

Human liver vs. human heart: 2595/9970 (26%)
Human liver vs. human liver: 318/9778 (3%)
Human heart vs. human heart: 454/9772 (5%)

Result:  for each subject tissue sample , obtain a = feature vector

FÐ=Ñ œ œ ÐB ßá ß B Ñx " !ß!!!2

consisting of expression levels of 20,000 genes.

Can we classify tissues this way?  Can we differentiate cancers
between ALL (lymphoblastic leukemia) and AML (myeloblastic
leukemia)

Goals:

1.  differentiate two different but similar cancers.
2. Understand genetic pathways of cancer

Basic difficulties:  few samples (e.g., 30-200);  high dimension (e.g.,
5,000 - 100,000).

Curse of dimensionality - too few samples and too many parameters
(dimensions) to fit them.
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Tool:  Support vector machine (SVM)

Procedure: look at feature space  in which  lives, andJ Ð=ÑF
differentiate examples of one and the other cancer with a hyperplane:

Methods needed:  Machine learning; reproducing kernel Hilbert
spaces (RKHS)

Consider a training data set

W! 3 3 3œ"
8œ ÖÐ ß C Ñ× ßx

where  is a sampe microarray and x3 3C − œ Ö"ß "×U

Assume that

C œ
"
"3 œ  if tumor is ALL

if tumor is AML .

How to learn the function  from examples?0 À J Ä" U

Remark:   The map  is difficult to guess from examples .0" W

With data set , can we find the right function  whichW U0 À Z Ä"

generalizes the above examples, so that  for all feature0 Ð Ñ œ C" v
vectors?

Easier:  find a , where0 À Z Ä ‘

0Ð Ñ  ! 0 Ð Ñ œ "à 0Ð Ñ  ! 0 Ð Ñ œ "Þx x x x if   if  " "
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4.  Support vector machine framework

Recall the we have  examplesregularization setting:  8

H œ ÖÐ ß C Ñßá ß Ð ß C Ñ×x x" " 8 8 , 

with , .x3 3
.− C − œ Ö „ "×‘ 

As mentioned above, we want to find a function   which0 À Ä"
.‘ 

generalizes the above data so that  generalizes the data .0Ð Ñ œ C Hx

As mentioned there, we will actually want here something more
general:  a function  which will best help us decide the true value0Ð Ñx
of .   It may not need to be that we want , but rather weC 0Ð Ñ œ Cx
want

œ 0Ð Ñ " C œ "
0Ð Ñ " C œ "

ß
x
x

>> if  
<< if (2)

i.e.,  is large and positive if the correct answer is  (e.g. a0Ð Ñ C œ "x
chair) and is large and negative if the correct answer is 0Ð Ñ C œ "x
(not a chair).

Then the decision rule will be to conclude the value of  based on theC
rule (2).  This is made precise as follows.  We have the following

optimization criterion for the 'right' :0

0 œ Z ÐC ß 0Ð ÑÑ  m0m ß
"

8
arg min

0− 3œ"

8

3 3 O
#

[

" x -

where  norm in an RKHS , e.g.,m0m œO [

m0m œ mE0m œ ÐE0Ñ .BÞO P
#

#

8
(
‘

Above 'arg min' denotes the  which minimizes the above0
expression.
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5.  Loss function:  hinge loss

Consider the error function

Z Ð0Ð Ñß CÑ œ Ð"  C0Ð ÑÑ ´ "  C0Ð Ñß ! Þx x x maxa b
œ Þ

Cß 0Ð Ñœ small if  have same sign
large otherwise  x

This is called the hinge loss function.

[Notice a is built in the error is   only if  (a moremargin ! C0Ð Ñ   "x
stringent requirement than just ]C0Ð Ñ   !Ñx

Thus data error is

/ œ Z Ð0Ð Ñß C Ñ
"

8
. 3 3

3œ"

8" x

What is a priori information?  Note surface  will separateL À 0 œ !
"positive"  with , and "negative"  with x x x x0Ð Ñ  ! 0Ð Ñ  ! À
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Fig.  1.   Red points have +1 and blue have 1 in the spaceC œ C œ 
Z L À 0Ð Ñ œ !.  is the separating surface.x

Assume some a priori information defined in terms of an RKHS norm
m † m m0mO O so  is small if a priori assumption is satisfied.  Let  be[
corresponding RHKS.

Will specify desirable norm  later...m † mO

Now solve regularization problem for the above norm and loss :Z

0 œ Ð"  C 0Ð ÑÑ  m0m Þ
"

8
! 4 4 

0− 4œ"

8

O
#arg min

[

" x - (1)

6.  Introduction of slack variables

Define new variables , and note if we find the min over  and 0 [ 04 40 −
of

arg min
0− 4œ"

8

4 O
#

[

"

8
 m0m"0 -

with the constraint
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C 0Ð Ñ   " 4 4 4x 0

04   !ß

we get the same solution .0

To see this, note the constraints are

04 4 4 4 4   Ð!ß "  C 0Ð ÑÑ œ Ð"  C 0Ð ÑÑmax ,x x

which yields the claim.

From form (1) above by representer theorem:

0Ð Ñ œ + OÐ ß ÑÞx x x"
4œ"

8

4 4

To find  (see previous lecture):  let a x xœ O œ ÐO Ñ œ OÐ ß Ñ
+
ã
+

Ô ×
Õ Ø

"

8

34 3 4

a a aœ  O
"

8
arg min

a− 4œ"

8

4
X

‘8

"0 - (2a)

with constraint:

y x x4 3 3 4 4

3œ"

8"+ OÐ ß Ñ   "  0 (2b)

04   !Þ (2c)

5.  Bias

Given choice of ,  we have concluded[ O

0Ð Ñ œ + OÐ ß Ñx x x"
4œ"

8

4 4 (3)

which optimizes (1), equivalently (2).
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Now can  class (2) of allowable  .  We may feel largerexpand ad hoc0
class than  is appropriate.  Often adding a constant  is useful.[ ,

Thus change  by adding a bias term :0Ð Ñ ,x

0Ð Ñ œ + OÐ ß Ñ  ,x x x"
4œ"

8

4 4 . (4)

Then plug into (1).

The effect:  regularization term unchanged (i.e., we ignore  in the,
norm ; remember any a priori assumption is valid if it is useful .m0m Ñ[

Note this is still a norm on the expanded space of functions of the
form (4), but may not be positive definite, i.e.,  for some  ofm0m œ ! 0
the form (4).

For example if , this may be the case.m,m œ ![

But: minimization of (1) using (4) still makes sense and allows
possibly richer set of functions than , as long as the regularization[
term  still makes sense for such a richer set.m0m[

In terms of slack variables , new optimization problem is to find03

a œ
+
ã
+

Ô ×
Õ Ø

"

8

 which minimizes:

"

8
 O"

4œ"

8

4
X0 -a a

with constraints:

C + OÐ ß Ñ  ,   " 4 3 3 4 4

3œ"

8 " x x 0

03   !

( problem).quadratic programming 
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Solving SVM:  Quadratic Programming

1.  Quadratic programming (QP):  Introducing Lagrange multipliers
! .4 4 and  (can be justified in QP for inequality as well as equality
constraints) we define the Lagrangian

PÐ ß ,ß ß ß Ña 0 ! .

´  O  + OÐ ß Ñ  , C  " 
"

8
" " "– — 
3œ" 4œ" 4œ"

8 8 8

3 4 4 3 4 4 4
X0 - ! 0a a x x

 Þ"
4œ"

8

4 4. 0

By Lagrange multiplier theory for constraints with inequalities, the
minimum of this in

aß ,ß ß œ Ð ßá ß Ñß œ Ð ßá ß Ñ0 ! ! . .! ." 8 " 8  

is a stationary point of this Lagrangian (derivatives vanish) is
maximized wrt , and minimized wrt the Lagrange multipliers, ,aß ,ß 0 !
. subject to the constraints

! .3 3ß   !. (5)

Derivatives:

`P

`,
œ ! Ê C œ !à"

4œ"

8

4 4! (6a)

`P "

` 8
œ ! Ê   œ !Þ

0
! .

3
4 4 (6b)

Plugging in get reduced Lagrangian

P Ð ß Ñ œ O  C + OÐ ß Ñ  "‡ X

4œ" 4œ"

8 8

4 4 4 3 4a a a x x! - !" " 
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œ  O ]O"
4œ"

8

4
X X! -a a a !

where

] œ

C ! ! á !
! C ! á !
ã ã ã ã ã
! ! á C !
! ! ! á C

Ô ×Ö ÙÖ ÙÖ ÙÖ Ù
Õ Ø

"

#

8"

8

(note (6) eliminates the  terms) with same constraints (5).04

Now:

`P

`+
œ ! Ê # O O] œ !

‡

4
  (7)- a !

Ê + œ Þ
C

#
3

3 3!

-

Plug in for  using (7), replacing  by everywhere:+ O O]3
"
#a  - !

P Ð ß Ñ œ  ]O]
"

%
‡ X X

4œ"

8

4a ! ! !"!
-

œ  T
"

%
"
4œ"

8

4
X!

-
! !,

where T œ ]O] X Þ

Constraints:  ; by (6) this reduces to! .4 4ß   !

! Ÿ Ÿ Þ
"

8
!4

Define ,   .G œ œ" "
# 8 #- -! !
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[note this does not mean complex conjugate!]

Then want to minimize (division by constant  OK - does not change#-
minimizing )!

" Ð# Ñ " "

# # % #
#  T œ  T ß

- - -
-! !

-" "
4œ" 4œ"

8 8

4 4

#
X X! ! ! ! (8)

subject to constraint also convenient to include (6a) as! Ÿ Ÿ Gà!3

constraint:    Thus constraints are:! † œ !Þy

! Ÿ Ÿ Gà † œ !Þ! ! y

Summarizing above relationships:

0Ð Ñ œ + OÐ ß Ñ  ,ßx x x"
4œ"

8

4 4

where

+ œ ß
C

#
4

4 4!

-

! -!4 4œ # ß

and  are the (unconstrained) minimizers of (8), with!4

T œ ]O] ÞX

After  are determined,  must be computed directly by plugging into+ ,4

More briefly,

0Ð Ñ œ C OÐ ß Ñ  ,ßx x x"
4œ"

8

4 4 4!

where  minimize (8).!4

Finally, to find , must plug into original optimization problem:   that is,,
we minimize



315

"

8
Ð"  C 0Ð ÑÑ  m0m"

4œ"

8

4 4  O
#x -

œ "  C + OÐ ß Ñ  ,  O Þ
"

8
" " – —
4œ" 3œ"

8 8

4 3 4 3



Xx x a a-

2 The RKHS for SVMÞ

General SVM:  solution function is (see (4) above)

0Ð Ñ œ + OÐ ß Ñ  ,ßx x x"
4

4 4

with sol'n for  given by quadratic programming as above.+4

Consider a simple case (linear kernel):

OÐ ß Ñ œ †x x x x4 4.

Then we have

0Ð Ñ œ Ð+ Ñ †  , ´ †  ,ßx x x w x"
4

4 4

where

w x´ + Þ"
4

4 4

This gives the kernel.  What class of functions is the corresponding
space ?[

Claim it is the set of linear functions of x:

[ ‘œ Ö † l − ×w x w .

with inner product

Ø † ß † Ù œ †w x w x w w" # " #[

is the RKHS of  above.OÐ ß Ñx y
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Indeed to show that is the reproducing kernel for ,OÐ ß Ñ œ †x y x y [
note that if  then recall , so0Ð Ñ œ † − ß OÐ ß Ñ œ †x x w x y x y[

Ø0Ð † ÑßOÐ † ß ÑÙ œ † œ 0Ð Ñy w y y[ ,

as desired.

Thus the matrix , and we find the optimal separatorO œ †34 3 4x x

0Ð Ñ œ †x w x

by solving for as before.w

Note when we add  to  (as done earlier), have all affine, 0Ð Ñx
functions .0Ð Ñ œ †  ,x w x

Note above inner product gives the norm

m † m œ m m œ A Þw x w# # #

4œ"

8

4[ ‘8 "
Why use this norm?  A priori information content.

Thus we consider just linear functions as a start; will presumably lead
to linear separators , with the hyperplane  separating0Ð Ñ L À 0Ð Ñ œ !x x
the classes in the feature space .Z

Final classification rule:  ;   0Ð Ñ  ! Ê C œ " 0Ð Ñ  ! Ê C œ "Þx x

Learning from training data:

R0 œ Ð0Ð Ñßá ß 0Ð ÑÑ œ ÐC ßá ß C ÑÞx x" 8 " 8

Thus

[ ‘œ Ö0Ð Ñ œ † À − ×x w x w 8

is the set of linear separator functions (known as  inperceptrons
neural network theory).  Can easily check  is an  dimensional[ 8
Hilbert space of functions, with inner product
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Ø † ß † Ù œ † Þw x w x w w" # " #[

Consider separating hyperplane :L À 0Ð Ñ œ !x

What's the best separator?  One with greatest margin.

Thus:  assuming data are separable by a plane, goal is to find
hyperplane  with widest , i.e., perpendicular distance fromL margin
plane to closest points on either side.

This is our assumption - that the plane will likely have thisa priori 
property.

Can we incorporate this assumption into a RKHS norm, so m0m[
small if margin large?

We are using the following norm:  If affine function )0Ð œ †  ,x w x
for some , define norm by:w − Z

m0m œ m mÞ[ w

Then our functional to be minimized is:
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/ œ Ð"  C 0Ð ÑÑ  m m ´ /  /
"

8
"
4œ"

8

4 4 . :x w- (1)

(the minimization is over Ð ß ,ÑÑÞw

Why is this a good choice?  And what should  be?-

Clearly we will consider the optimal choice of  to be the one withÐ ß ,Ñw
the largest margin.

3  Toy example:Þ

Information

R0 œ ÖÒÐ"ß "Ñß "Óß Ò "ß " ß "Óß ÒÐ"ß "Ñß"Óß ÒÐ"ß"Ñß"Ó×a b
(red +1 blueœ à œ "Ñà

0 œ †  ,w x

œ + Ð † Ñ  ," ï
3

3 3x x

      OÐ ß Ñx x3

so

w xœ + Þ"
3

3 3
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PÐ0Ñ œ Ð"  0Ð ÑC Ñ  l l *
" "

% #
"
4

4 4 
#x w ( )

(we let minimize wrt , - œ "Î#à ,ÑÞw

Equivalent:

PÐ0Ñ œ  l l
" "

% #
"
4œ"

%

4
#0 w

C 0Ð Ñ   "  à   !Þ4 4 4 4x 0 0

[Note effectively ]03 3 3 œ Ð"  †  , C Ña bw x

Define kernel matrix

O œ OÐ ß Ñ œ † œ

# ! # !
! # ! #
# ! # !
! # ! #

34 3 4 3 4x x x x
Ô ×Ö ÙÖ Ù
Õ Ø

m0m œ l l œ O # +  % + +  + + Þ[ w a a# X #

3œ"

%

3 " $ # %œ  " a b

where a œ Þ

+
+
ã
+

Ô ×Ö ÙÖ Ù
Õ Ø

"

#

%

Formulate
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PÐ0Ñ œ PÐ ß ,ß Ñ œ  O
" "

% #
a a a0 "

4œ"

%

4
X0

œ
"

%
 +  # + +  + +" "  a b

4œ" 4œ"

% %

3 " $ # %3
#0

subject to (Eq. 4a):

0 04 4 4 4  "  C ÐO Ñ  , ß   !Þa bc da

Lagrange multipliers    (see (4b)):! .œ Ð ßá ß Ñ ß œ Ð ßá ß Ñ! ! . ." 8 " 8
X X

optimize

PÐ ß ,ß œ  O  O  , C  " 
" "

% #
a a a a0 ! .ß ß Ñ " "  ‘ˆ ‰a b

4œ" 4œ"

% %

3 4 4 4
X

40 ! 0

 "
4œ"

%

4 4. 0

œ  O  ]O  ,   †  † Ð"!Ñ
" "

% #
" "
4œ" 4œ"

% %

4 4
X X X0 !a a a y! ! ! 0 . 0

with constraints

! .3 3ß   !Þ

Solution has (see (7) above)

! œ # ]- "a

Ð ] œ œ Ñ

C ! á ! " ! ! !
! C á ! ! " ! !
ã ã ã ã ! ! " !
! ! á C ! ! ! "

recall 
Ô × Ô ×Ö Ù Ö ÙÖ Ù Ö Ù
Õ Ø Õ Ø

"

#

8

and (7a above)
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! ! !œ œ Þ
"

#-

Finally optimize (7b)

"
3œ"

%

3
X!  T ß

"

#
! !

where

T œ ]O] X

œ

" ! ! ! # ! # ! " ! ! !
! " ! ! ! # ! # ! " ! !
! ! " ! # ! # ! ! ! " !
! ! ! " ! # ! # ! ! ! "

Ô ×Ô ×Ô ×Ö ÙÖ ÙÖ ÙÖ ÙÖ ÙÖ Ù
Õ ØÕ ØÕ Ø

œ

" ! ! ! # ! # !
! " ! ! ! # ! #
! ! " ! # ! # !
! ! ! " ! # ! #

Ô ×Ô ×Ö ÙÖ ÙÖ ÙÖ Ù
Õ ØÕ Ø

œ Þ

# ! # !
! # ! #
# ! # !
! # ! #

Ô ×Ö ÙÖ Ù
Õ Ø

constraint is

! Ÿ Ÿ G ´ œ Þ
" "

# 8 %
!

-
(10a)

Thus optimize

P œ   #  #" 3 " $ # %

3œ" 3œ"

% %

3
#" " ! ! ! ! ! !
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œ  Ð  Ñ  Ð  Ñ Þ"
3œ"

%

3 " $ # %
# #! ! ! ! !

œ ?  @  ?  @ ß# #

where
? œ  à @ œ  Þ! ! ! !" $ # %

Minimizing:

"  #? œ !à "  #@ œ !

Ê

? œ @ œ Þ
"

#

Thus we have

!3 œ
"

%

for all  (recall the constraint (10a)).  Then3

! ! !œ # œ œ Þ

"Î
"Î
"Î
"Î

-

Ô ×Ö ÙÖ Ù
Õ Ø

4
4
4
4

Thus

a œ œ Þ
]

#

"Î
"Î
"Î
"Î

!

-

Ô ×Ö ÙÖ Ù
Õ Ø

4
4
4
4

Thus

w x x x x xœ + œ Ð    Ñ œ Ð%ß !Ñ œ Ð"ß !Ñ
" "

% #
" a b3 3 " # $ % .
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Margin = "
l lw œ "Þ

Now we find  separately from original equation ( ); we will minimize, *
with respect to  the original functional,

PÐ0Ñ œ "  †  , C  l l
"

%
"a ba b
4

4 4 
#w x w (11)

œ "  Ð"  ,ÑÐ"Ñ  "  Ð"  ,ÑÐ"Ñ
"

%
œc d c d 

 "  Ð"  ,ÑÐ"Ñ  Ð"  Ð"  ,ÑÐ"Ñ  "c d c d  

œ ,  ,  ,  ,  "
"

%
œ c d c d c d c d   

œ ,  ,  "
"

2
.e fc d c d 

Clearly the above is minimized when ., œ !

Thus w œ Ð"ß !Ñà , œ ! Ê

0Ð Ñ œ †  , œ Bx w x "
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4.  Other choices of kernel

Recall in SVM we have used the kernel

OÐ ß Ñ œ † Þx y x y

There are many other choices of kernel, e.g.,

OÐ ß Ñ œ / OÐ ß Ñ œ Ð"  l † lÑx y x y x yl  l 8x y #  or

note - we must choose a kernel function which is positive definite.
How do these choices change the discrimination function  in0Ð Ñx
SVM?

Ex 1:  Gaussian kernel

O Ð ß Ñ œ /5 x y l  l#

# #
x y
5

[can show pos. def. Mercer kernel]

SVM:   from (4) above have

0Ð Ñ œ + OÐ ß Ñ  , œ + /  ,ßx x x" "
4 4

4 4 4


|x x l4
#

# #5

where examples  in  have known classifications , and  arex4 4 4J C + ß ,
obtained by quadratic programming.



325

What kind of classifier is this?  It depends on  (see Vert movie).5

Note Movie1 varies  in the Gaussian (  corresponds to a linear5 5 œ _
SVM) then movie2 varies the margin  (in linear feature space )à J"

l l #w
as determined by changing  or equivalently - G œ Þ"

# 8-

5.  Software available
Software which implements the quadratic programming algorithm
above includes:

• SVMLight: http://svmlight.joachims.org
• SVMTorch: http://www.idiap.ch/learning/SVMTorch.html
• LIBSVM: http://wws.csie.ntu.edu.tw/~cjlin/libsvm

A Matlab package which implements most of these is Spider:

http://www.kyb.mpg.de/bs/people/spider/whatisit.html
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SVM:  Interpretations and applications

1.  Geometric interpretation

Recall:  if

0Ð œ †  ,x w x)  

for some , we have defined:w − J

m0m œ l l[ w

(independent of ).,

Fig 2:  SVM geometry (2 dimensions)

Functional to be minimized:

P œ Ð"  C 0Ð ÑÑ  l l ´ P  P
"

8
"
4œ"

8

4 4  . :
#x w- (8a)

(minimization over Ð ß ,ÑÑÞw

Why is this a good choice for ?  What should  be?P -

Consider variables (see (1b) earlier)

04 4 4 œ Ð"  C 0Ð ÑÑ Þx

Then
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P œ 
"

8
"
4œ"

8

4
#0 -| | (8b)w

In feature space , define  direction be parallel to , J positive negativew
direction antiparallel to .w

For , value of  determined by distance ofx x w x x− J 0Ð Ñ œ †  , .Ð Ñ œ
x from the separating hyperplane

L 0Ð Ñ œ !! À x . 

We assume  positive in direction (parallel to ), negative.Ð Ñx w  positive 
in negative direction (antiparallel to ).w

Specifically

0Ð Ñ œ l l.Ð Ñx w x  

since gradient , so  increases along  rate  per unitf0Ð Ñ œ 0 l lx w w w
change of   in  direction.x w

Note if  (i.e.,  is in positive class),C œ "4 4x

04 

"
l l
"
l l

œ Ð"  l l.Ð ÑÑ œ Þ
! .Ð Ñ  

"  l l.Ð Ñ .Ð Ñ 
w x

x
w x x

 
if 
if  w

w

Define margin hyperplane (see diagram)

L 0Ð Ñ œ "": .x

If  on  side of  ( :x xpositive L .Ð Ñ   Ñ"
"
l lw

04 œ !, 

if  on  side of :x negative L"

04 "œ "  l l.Ð Ñ œ l lÐ L Ñw x w+ distance from .

Thus if C œ "4
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04
4 "

" 4 "
œ

! L
l l † Ð L Ñ Lœ if  is on the "correct" side of margin 

distance from if  on "wrong" side of .x
w x

Similarly, defining the "negative margin" hyperplane

L À 0Ð Ñ œ "" x ,

we have if  (  in negative class)C œ "4 4x

04
4 "

" 4 "
œ

! L
l l † L Lœ if  is on the "correct" side of margin 

distance from if  on "wrong" side of .x
w x

Therefore (see above figure)

"
4

40 œ l l † Hw

with  the total distance of points on the "wrong" sides of theirH
respective margin hyperplanes i.e., "total error"L ß H œ Þ„"

Also:

distance from separating hyperplane  to margin hyperplaneL!

L œ Þ"
"
l lw

[note: vectors on top of or on wrong side of margins are only ones
needed for quadratic programming calculation; these are the support
vectors]

[fewer support vectors easier calculation  machine]Ê Ê sparse

Conclusion:  Minimization of (1) involves a balance between
minimizing total error  and the margin width , the balance!

4
4

"
l l0 w

determined by the regularization parameter .-

2.  Special case:  Perfect separability

If classes perfectly separable:
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Minimizing

P œ  œ P  P
"

8ðñò" î
4œ"

8

4 . :
#0 -| |w

      P P. :

involves maximizing margin  and minimizing the total error "
l l

4
4w

!0

with the balance determined by .-

Choose  and  so  bisects the two groups with the maximumw , L!

"margin" (see diagram above), and the hyperplanes  touchL„"

closest  to  (such  are ).x x4 ! 4L support vectors

Then still have

"
4

40 œ œ !ßtotal error

while margin  is as large as possible."
l lw

Recall

04 4 "œ l lÐ L Ñw xdist.  to  

Thus If we  |  further by increment  (increase thedecrease w wl .l l
margin ),"

l lw
we will change  by an amountP
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.P œ .  . l l ´ .P  .P Þ
"

8  " ˆ ‰
4œ"

8

4 . :
#0 - w

Thus if  sufficiently small the second term (negative) is outweighed-
by the first term (positive) and .ß .P  !

We thus have in perfectly separable case:

Theorem:  The  which minimize (1) yield  whosew x w xß , 0Ð Ñ œ †  ,
separating hyperplane  gives the widest margin, if  isL À 0Ð Ñ œ !x -
sufficiently small.

Summary:    In the general case we choose | |  and wem0m œ ß[ w
minimize

"
4œ"

8

4
#0 - | |w

subject to

C Ð †  ,Ñ   " 4 4w x 0

04   !.

This is the basic SVM algorithm for finding ; see earlier for the0Ð Ñx
QP algorithm which this leads to.

3.  The reproducing kernel

As shown earlier the reproducing kernel for  above isOÐ ß Ñx y [
ordinary dot product of vectors:

OÐ ß Ñ œ † Þx y x y

Indeed, recall

Ø0Ð † ÑßOÐ ß † ÑÙ œ Ø † Ð ÑßOÐ ß † ÑÙ œ Ø † Ð † Ñß † Ð † ÑÙ œ † œ 0Ð Ñßx w x w x w x x†

as desired.  Thus in this case the initial optimization problem yields



332

0Ð Ñ œ + OÐ ß Ñ  , œ + †  , œ Ð+ Ñ †  ,ßx x x x x x x" " "
4œ" 4œ" 4œ"

8 8 8

4 4 4 4 4 4

so that the desired  must have the formw

w xœ + ß"
4œ"

8

4 4

where  are the examples (positive and negative) in the featurex4

space .Z

The  are computed by the above quadratic programming algorithm.+4

4 Support vectors:Þ

Note from above that

0Ð Ñ œ †  , œ Ð+ Ñ †  ,ßx w x x x"
4

4 4

or more generally

0Ð Ñ œ + OÐ ß Ñ  ,ßx x x"
4

4 4

with  obtained from the above optimization.  It can be shown that+4

+ Á ! Á !4 4 iff .0

That is, in the end the only data  which contribute to the separatorx4

0 Ð Ñx  are those which are on the "wrong side" of their margins (these
are the ).support vectors

Thus SVM is a .  That is, there are very few terms insparse machine
the sum defining , with contributions only from "critical" data points0
(for which  which are near the hyperplane boundary.04 Á !Ñ

Sparseness leads to very good computational properties - the
algorithms are much easier to solve when so few vectors are actually
involved in the calculations.
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5.  Example application:  handwritten digit recognition - USPS
(Scholkopf, Burges, Vapnik)

Handwritten digits:

Training set:  7300;       Test set:   2000

10 class classifier;  class has a separating SVM function3>2

0 Ð Ñ œ †  ,3 3 3x w x

Chosen class is

Class œ 0 Ð ÑÞargmax
3−Ö!ßáß*×

3 x

F FÀ 1 Ä Ð1Ñ œ − Jdigit feature vector x

Kernels in feature space :J

 RBF:   OÐ ß Ñ œ /x x3 4


l  l3 4
#

# #

x x
5

 Polynomial:   O œ Ð †  Ñx x3 4
.)

 Sigmoidal:  O œ Ð Ð † Ñ  Ñtanh , )x x3 4

Results:
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Computational Biology Applications

References:
T. Golub et al Molecular Classification of Cancer: Class Discovery
and Class Prediction by Gene Expression. Science 1999.

S. Ramaswamy et al Multiclass Cancer Diagnosis Using Tumor Gene
Expression Signatures. PNAS 2001.

6.  Microarrays for cancer classification

Goal:  infer cancer genetics by looking at microarray.

Microarray reveals expression patterns and can hopefully be used to
discriminate similar cancers, and thus lead to better treatments.

Usual problem:  small sample size (e.g., 50 cancer tissue samples),
high dimensionality (e.g., 20-30,000). Curse of dimensionality.

Example 1:  Myeloid vs. Lymphoblastic leukemias

ALL:  acute lymphoblastic leukemia
AML:  acute myeloblastic leukemia

SVM training:  leave one out cross-validation
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         S. Mukherjee
fig. 1:  Myeloid and Lymphoblastic Leukemia classification by SVM

(other methods are k-nearest neighbors and weighted voting)

       S. Mukherjee
fig 2:  AML vs. ALL error rates with increasing sample size

In above figure the curves represent error rates with split between
training and test sets.  Red dot represents leave one out cross-
validation.




