Suggestions for PS 10:

1. IV.10: (a) try a countable set of elements of X.

(b) let C be an open cover of X. How much of X does a set in C cover? Does this extend into a finite subcollection which covers X?

2. IV.11: (a) Does the sequence argument work if we translate to nets?(b) For two limits x and y, find open sets which separate them.

3. IV.15: You can use previous results about such series. To show A is an algebra note every f, $g \in C = C([0,2\pi])$ have series

$$f = \sum_{n=-\infty}^{\infty} a_n e^{inx}, \qquad g = \sum_{n=-\infty}^{\infty} b_n e^{inx}.$$

If f, $g \in A$ the sums range over non-negative *n*. For f, $g \in A$ let f_N and g_N be their partial sums. Show for each k

 $|\int (fg - f_N g_N) e^{ikx} dx | \le || f_N ||_2 || g_N - g ||_2 + || g ||_2 || f_N - f ||_2$

(try Hölder), so $fg \in A$. To show A closed, show if f_n is Cauchy in A (in the uniform convergence topology of continuous functions), then its limit is in A. How to show A separates points (note all e^{ikx} for k > 0 are in A)?

4. IV.16: We want the version of S-W theorem in Theorem IV.9. Why can we assume B is not of the form $\{f \in C_{\mathbb{R}} \mid f(x_0) = 0\}$ for any x_0 ?. To show $B = C_{\mathbb{R}}(X)$, show B is closed so it suffices to show it is dense in $C_{\mathbb{R}}(X)$. Does the text proof work if we do not assume $1 \in B$? Does Lemma 2 of the Appendix to IV.3 hold? We would need to prove first (see proof in the book) that the algebra \mathcal{A}' of polynomials P(x) on [-1,1] without constant terms can still approximate |x|. Note |x| can be approximated by \mathcal{A} if the latter is all polynomials. Try to replace $P_n(x)$ by $P_n(x) - P_n(0)$. Thus the proof of Lemma 2 goes through without 1 in B.

For Theorem IV.12, note $1 \in B$ is only assumed for constructing f_{xy} . Show you need to establish that without 1 it is still possible for any $h \in C_{\mathbb{R}}(X)$ to find a $f_{xy} \in B$ with $f_{xy}(x) = h(x)$, $f_{xy}(y) = h(y)$. Note given x, y, if a is a function in B which has different non-zero values there (why does such a function exist?), we can multiply a by a constant so a(x) = 2. If $b(x) = a^2(x)$, why is $a(x)b(y) - a(y)b(x) \neq 0$? Show then there are constants c_i with $\binom{**}{c_1a(x) + c_2b(x)} = h(x)$, $c_1a(y) + c_2b(y) = h(y)$?

5. IV.19: Consider $\int_{-1/2}^{1/2} s_k(x - y) (f(y) - f(x)) dy$, and show this goes to 0 uniformly by writing

$$\int_{-1/2}^{1/2} s_k(x - y) (f(y) - f(x)) dy = \left(\int_{A_{\delta}} + \int_{-A_{\delta}} \right) s_k(x - y) (f(y) - f(x)) dy,$$

where $A_{\delta} = (x \cdot \delta, x + \delta)$. Now show for fixed δ the second integral can be made small for large k (uniformly in x of course), while the first integral is bounded for all k by noticing that since f is continuous on a compact interval, it is uniformly continuous (this implication may be assumed). Why does this show, uniformly in x, $\sup_{y \in A_{\delta}} |f(y) - f(x)| \xrightarrow{\rightarrow} 0$? Shows thus for any $\epsilon > 0$ there is a δ and a k_0 such that for $k > k_0$, both integrals are absolutely less than $\epsilon/2$. Finally why does $\int_{-1/2}^{1/2} s_k(x - y) f(y) dy \xrightarrow{\rightarrow} f(x)$ uniformly?

6. IV.20: Set $s_k(x) = (1-x^2)^k/I_k$, and use the previous result; show $\int_{-1}^{1} s_k(x-y) f(y) dy$ is a polynomial.

7. IV.31: Note in the proof of Theorem IV.16 C(X) should be $C_{\mathbb{R}}(X)$. Assume ℓ'_+ and ℓ'_- is another pair of positive functionals with $\ell = \ell'_+ - \ell'_-$, with $\|\ell\| = \ell'_+(1) + \ell'_-(1)$. Show for any non-negative f(x),

$$\ell(f) = \ell'_{+}(f) - \ell'_{-}(f) \leq \ell'_{+}(f)$$

so

$$\sup_{\substack{0 \leq h \leq f}} \ell'_+(h) \geq \sup_{\substack{0 \leq h \leq f}} \ell(h) = \ell_+(f).$$

Why does it follow for $f \ge 0$, $\ell'_+(f) \ge \ell_+(f)$? Thus $\ell'_+ - \ell_+$ is positive. However

$$\ell'_{+}(1) + \ell'_{-}(1) = \| \ell \| = \ell_{+}(1) + \ell_{-}(1).$$

Why does this show $\ell'_{\pm}(1) = \ell_{\pm}(1)$? Show thus for any $0 \le f \le 1$

$$(\ell'_+ - \ell_+)f \leq (\ell'_+ - \ell_+)(1) = 0$$