
Suggestions for problem set 11:
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3. II.17:    What can we conclude if a space has an infinite collection of disjoint sets of the
same positive measure?

4. II.18:    We want to prove the statement from class.  Show (at least for  a positive integer):7
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How does unitarity of U  help show for each t, the integrand goes to 0?  On the other hand1
show for each t, the last integrand is bounded by a fixed constant (try to bound each term in
the norm of (1) individually; why is f(T x)  = f(x) ? Note norms are wrt x).  Use² ² ² ²t 2 2
dominated convergence to take the limit.  You can also show the Corollary to the MET since
if T  is ergodic for each t, J constant functions (why?).  Thus show for any f, Pf = 1,f ,t œ Ø Ù
where 1 is the function identically 1Þ



5. II.20:    If  is irrational, move to the unit interval, where Tx = x +  mod 1 (if x 1 take its) ) 

fractional part).  Let  = e .  What is U ?  If f = a  and Uf = f, why is e  = 1 for9 9 9n n n n
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any n with a   0?  Conversely if  is rational, why are there non-constant f of the aboven Á )
form preserved by ?Y

6. II.21:  Why does uniform equicontinuity follow from the fact T is measure preserving and f
is uniformly continuous?  You can use the fact that any continuous function on a compact
space is uniformly continuous, i.e., given  > 0, there is  > 0 such that for any x,y with (x,y)% $ 3
< , |f(x) - f(y)| < .  Show given  > 0, if (x, y)$ % % 3 $

|M f(x) - M f(y)|   |f(T x) - f(T y)| < .
NN N

N-1 

n=0

n nŸ
" � %

so M  are uniformly equicontinuous.  How does Theorem 1.27 apply?N

9. VI.3a:   If Tx is the limit of this sequence for each x, is T bounded?  How does Theorem
VI.1 apply?


