Suggestions, PS 1

3. Reed and Simon I.5. To show $\lim_{n\to\infty} d(x_n, y_n)$ exists for any two Cauchy sequences, show first that

$$d(x_n, y_n) - d(x_m, y_m) \le d(x_n, x_m) + d(x_m, y_n) - d(x_m, y_m).$$
(1)

Show

$$|d(x_m, y_n) - d(x_m, y_m)| \le d(y_n, y_m)$$

This shows the right side of (1) goes to 0 as $m, n \to \infty$. Use this method to show that $d(x_n, y_n) - d(x_m, y_m) \xrightarrow[m,n\to\infty]{} 0$. Thus $\{d(x_n, y_n)\}_n$ form a Cauchy sequence (as a sequence of numbers), and so have a limit. Show that this limit is the same if the Cauchy sequence x_n is replaced by x'_n and y_n is replaced by y'_n , as long as $d(x_n, x'_n) \to 0$ and $d(y_n, y'_n) \to 0$. This will show that the limit depends only on the equivalence classes of $\{x_n\}$ and $\{y_n\}$. Thus the collection \tilde{M} of equivalence classes of sequences is well-defined, and the distance between two elements of \tilde{M} can now be defined, as these are just two Cauchy sequences (how is this done?). Follow by showing completeness of the space \tilde{M} . Show that we can identify an element x of M with the sequence consisting only of x's, so that we can identify M as a subset of the new space \tilde{M} . Why is M dense in \tilde{M} ?

5. An example of completeness: You may assume the fact from Taylor series that if $S_N(x) = \sum_{n=0}^{N} x^n/n!$, then $S_N(x)$ converges to e^x uniformly on the interval [0, 1]. Note then that e^x is not a polynomial and hence not in P. You may assume the fact that a sequence of functions can only converge to one function using the distance measure defined by the norm.

6. Some metrics: For ρ_2 you may assume (or prove) that for any f(x), $\int |f| dx = 0$ iff f = 0 a.e. To show the triangle inequality for ρ_3 , let $|| f || = \left(\int_0^1 |f|^2 dx\right)^{1/2}$. You need to show

$$\| f_1 - f_3 \| \le \| f_1 - f_2 \| + \| f_2 - f_3 \|$$
.

This is equivalent to (1)

 $\| g_1 + g_2 \| \le \| g_1 \| + \| g_2 \|$

for arbitrary g_i . Without loss we can assume that g_1 and g_2 are non-negative functions (why?). Now multiply out the integrand defining the left side of (1), and use Hölder's inequality:

(2)
$$\int |\mathbf{f} \cdot \mathbf{g}| d\mathbf{x} \leq \|\mathbf{f}\| \|\mathbf{g}\|.$$

To prove Hölder's inequality, you may first assume that f and g are both positive (by taking absolute values) and that $\| f \|$ and $\| g \|$ are both 1, since otherwise we could redefine f and

g by multiplying them by constants so as to make this true and to still have equality (2) (why?). Now use the fact that $f(x)g(x) \le 1/2(f^2(x) + g^2(x))$ (show this is true for any pair of numbers) to complete the argument.