Suggestions - PS 3

2. I.23: (a) Is the intersection of all σ -fields which contain S a σ -field? Notice (b) is similar to 14(a).

3. I.27: Note

$$\mathbf{T}_n \mathbf{x} - \mathbf{T}_m \mathbf{x} = \mathbf{T}_n \mathbf{x} - \mathbf{T}_n \mathbf{y} + \mathbf{T}_n \mathbf{y} - \mathbf{T}_m \mathbf{y} + \mathbf{T}_m \mathbf{y} - \mathbf{T}_m \mathbf{x},$$

with $y \in D$. Choose y so $|| y - x || \le \epsilon/(3C)$ (what is C?). For *n*, *m* large show the left side norm is less than ϵ , so $\{T_nx\}$ is Cauchy and so convergent. Thus there is a T which is the limit of T_n for all x. Show T is linear. Note since $Tx = \lim_{n \to \infty} T_nx$, T must be bounded (why?).

4. Operator norm: Lagrange multipliers