
MA 717
M. Kon

Problem Set 8
Due Thurs. March 22

Lecture 13

This is a shorter problem set because of the snowstorm on Tuesday of last week.  It may be
turned in on Thursday, or optionally on Friday by 5 pm, in the envelope outside my door.

Starred problems are optional

1.  Fourier transforms and decay rates:  Prove the following theorem:

Theorem:  (a)  If a function  has n derivatives which are integrable and which go to 0 at<ÐBÑ
∞, then the Fourier transform satisfies

l Ð Ñl Ÿ OÐ"  l lÑ Þs< = = 8 Ð Ñ1

Conversely, if (11) holds, then  has at least derivatives.<ÐBÑ 8  #

(b)  Similarly, if  and its first  derivatives are integrable and go to 0 at , then< =sÐ Ñ 8 ∞

l ÐBÑl Ÿ OÐ"  lBlÑ< 8. Ð Ñ2

while if (11) holds, then  has at least  derivatives.< =sÐ Ñ 8  #

2 .  The interchange of integration and summation:  ‡ Given a scaling function (x) L ,9 − 2

we have shown in class that the following condition is equivalent to the basis (x-k)  for VÖ ×9 0
being orthonormal, i.e. ( (x-k), (x- )) = 0:9 9 j
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First, we assumed that  were orthonormal, so thatÖ ÐB  5Ñ×9 5

( (x-k), (x- )) = 09 9 j

and so

 ( ( (x-k)), ( (x- ))) = 0,Y 9 Y 9 j

giving
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Thus we concluded that if m 0,Á
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Thus we had
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At this point in the argument, justify the interchange of summation and integration by showing

that the integral of the absolute value of the above integrand, i.e.    | ( -2n )| d  is^' �2
0
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finite (it is known from advanced calculus that this condition is enough to justify the
interchange).  To show the last thing, you may assume also (another basic fact) that integrals
and sums can be interchanged if the integrand is positive; so interchange the two and rewrite
the integral as one over (- , ) which is known to be finite (since L ).∞ ∞ −9 2

3 .  Example of orthogonal subspace decomposition:‡

(a) Show that every function f in L [- , ] can be uniquely written in the form f = f  + f ,2
1 21 1

where f  is even and f  is odd.1 2
(b)  Show that f  and f   are orthogonal to each other.1 2
(c)  Thus conclude that L [- , ] is an orthogonal direct sum of odd and even functions.2 1 1
(d)  Show that if W is the even functions in L , then W  is exactly the set of odd functions.2 ¼

4 .  Integral of the scaling function:  ‡ We show here that if  is a scaling function for a9
multiresolution analysis (satisfying conditions (a) - (f) from class), then
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Prove this as follows.
(a)  Recall that

�
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Use this to show (with the results of a previous problem) that l Ð!Ñl œ Þs9 "

#È 1

(b)  Conclude that (12) holds.
(c)  Since the properties of the scaling function and multiresolution analysis are not changed if
we replace the scaling function  with  for some complex number  with ,9 "9 " "ÐBÑ ÐBÑ l l œ "
show that we may without loss of generality assume that '∞

∞
9ÐBÑ.B œ "Þ



5 . Condition for orthonormal basis:  ‡   Prove that for the Hilbert space , given a set[
Ö ×<n n=0

∞  of functions with norm 1, the following is true:  A necessary and sufficient condition
for  to be an orthonormal basis is that for any f ,Ö × −< [n

(1)     | ,f |   = .�∞ #

n=0
n
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6.  Background vs. details:  To understand better the role of MRA's in decomposing
functions, consider the following example using Haar wavelets.  Consider again the function

f(x) =   
3x + 1 if 0 x < 1
0 otherwise          H Ÿ

whose Haar wavelet expansion we found earlier.

(a)   Recall that, for example, we have

P Ð Ñ œ Z Š[ Š[ Š[ Šá#
" " # $‘

Conclude we can find an expansion of  in the form0
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(b)  Find the coefficients , and sketch the "background function"+5

@ œ + ÐBÑÞ" 5 "5

5œ∞

∞� 9

(c)  Similarly find and sketch the first detail function

A œ + ÐBÑ" "5 "5

5œ∞

∞� <

(d)  Construct and sketch the second detail function

A œ + ÐBÑ# #5 #5

5œ∞

∞� <

(e)  To see how background and details fit together in this MRA, compare the graphs of the
background function , with the functions  and , which@ @ œ @  A @ œ @  A  A" # " " $ " " #

contain two levels of detail enhancement.



(f)  Show from above that

0ÐBÑ œ @  A  A á" " #

These observations justify appropriateness of the term "MRA".  Fancier versions of such
multiresolution algorithms (along with compression routines) have made it possible to
compress two hour high definition motion pictures into 15 gigabyte downloads.


