Wavelets - constructions and applications

1. Other constructions:
Suppose we use another “pixel” function ¢(x):
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fig 1: another pixel function

Can we use this to build approximations to other functions? Consider linear
combination:

26(x) + 39 (x — 1) — 26(x — 2) + é(z — 3)
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fig 2: graph of linear combination of translates of ¢
Note we can try to approximate functions with other pixel functions.

Question: Can we repeat the above process with this pixel (scaling)
function? What would be the corresponding wavelet?



Assumptions: |¢(x)| has finite integral and [ ¢(x)dx # 0.

More general construction:

As before define V) = all L? linear combinations of ¢ and its translates:

={f(x) =) a ¢Ok(x)‘ ar €R; f € L*}.
k

with
box(z) = ¢p(z — k).
and
Vi={f(x) =) ar¢u(x)|ar €R; f € L*}.
2
() = 242 p(22 — k)
etc.

We want the same theory as earlier.
[Note Vj no longer piecewise constant functions]
Recall condition

(d) fz) €Vh = f(2z) € Vi

(1)

2)

This is automatically true by definition of V,,, since if f(xz) € Vj, then
f has the form of an element of (1). Then f(2x) has form of an element of

(2), and f(2x) € V4.

Similarly can be shown that (d) holds for any pair of spaces V,, and V1 of

above form.

2. Some basic properties of F.T.:



Assume that f = F(f). Then

(@) F(f(z—e)(w) =e ™ f(w)
(b) F(f(cx)) = Lf(w/c)

Proofs: Exercises.
3. Orthogonality of the ¢'s:
Another property of V :

(f) The basis {¢(z — k)} for V} is orthogonal, i.e. (¢p(z — k), p(z — £)) =0
for k # /.

Not automatic. Let F(f) = F.T. of f = f(w).

Require a condition on ¢ of the following sort: if k # £, then (note we will
use w instead of ¢ for Fourier variable) :

(F(o(z = k), Fp(z = 0)))
(e ™" 6 (w),e ™ d(w))

= [ ORw) P

Thus conclude if m # 0,

- / B2 dw

o0

(o o ) emaras

(n+1)-27
_Z/ zmw‘¢ )‘de

n=——oo

0= ((z—k), ¢z - 1)) =



2
—Z/ ¢\ (w — 2n) [ duw

n—=—oo

/277 Zm“’i 16(w — 2nm)|? dw

n=—00
[since we can show that the integral of the absolute sum converges because
m ~~
> |¢(w — 2n7)|? dw absolutely integrable; see exercises]

n=——oo

Conclude function Z |6(w —2nm)[2 on [0,27] isin L? because it has

square summable Fourier coefficients (in fact they are 0 if m # 0).

o0

Further Y |@(w—2nm)[? is 27- periodic in w, and has a Fourier series
e} R [©¢) )
Z |p(w—2n7)|* = Z Cm €
n—=—oo m=—o0
where
1 s ) o0 .
Cn = 5 i e_zm“’nzoo |p(w —2nm)|*dw=0 if m #0.
And
=g [ Bl =5 [ B
21 J_ 0 27 J_
- de =
om | (2)"dz =
Thus
= 1
—9 — imr _ _—



This condition equivalent to orthonormality of {¢(z — k)}.
Vo C Vi:

Recall the condition

@ Vo €Wy

What must be true of ¢ for this to hold in general? This says that every
function in Vj is in V4. Thus since ¢(x) € W, it follows ¢(x) € V1, i.e.

¢(x) = linear combination of translates of V2 o(2x)

=> hidu(@) (3)
k

dre(z) = 2Y2p(22 — k)

[recall normalization constant \/5 is so we have unit L? norm].

Ex: If ¢(x) = Haar wavelet, then
¢(x) = ¢(2r) + 6(22 — 1)

1

\/§¢10($) +

1

2 ¢11(z)

= hloqblo(x) + h11¢11(x)



2.57

1.5¢

0.5¢

;2 _‘1 1 2
fig3: ¢(x) = ¢(22) + ¢(22 — 1)
Thus in this case all h's are 0 except hyp and hig;

hio hip = —

- vl

Note in general that since this is an orthonormal expansion,

th = [lp(2)|I* <

4. What must be true of the scaling function for (1) above to hold?

Thus in general we have:

> hioula) = fim Z o @

k=—00

in L? norm. Denote

> hidir(z) = Fy(x)



Specifically,

lo(x Z hie¢ri(x)|| — 0.

[recall F is Fourier transform]
Corollary of Plancherel Theorem:
Corollary: The Fourier transform is a bounded linear transformation. In

particular, if the sequence of functions {Fn(x)} converges in L* norm,
then

F( lim Fy)(w) = lim F(Fy)(w)

in L? norm, i.e., Fourier transforms commute with limits.

Thus since co sums are limits and F is linear:

f( i hidrie(x ) th (P11 (w
K=—00

k=—00

[1.e., F commutes with co sums]
Let F(¢)(w) = ¢(w). Then generally:
F(dp)(w) = F(2Po(2x — k))(w)
=212 F(¢(2'z — k))(w)
[recall dilation properties of Fourier transform earlier]
= 2017 5 F(¢(a — k) (w/2)
[recall translation by k pulls out an e~**]
= 9792 M2 (g () (w]2)

— 92— J/2 —zwk/2] (w/2j)



Specifically for j = 1:

F(ow)(w) = V2™ - 3(w/2)

Recall (2):

f: hi ()

k=—00

Fourier transforming both sides:

Define

w/2 Z hy —— e—zk (w/2)

k=—00

note m is 27- periodic — Fourier series of m(w/2) given above.
Note m(w) € L?[0,2x], since Y hi < oco.
k
Thus by (4):
3(w) = m(w/2) $(w/2).

with m( - ) a 2m-periodic L? function.

[Note: This condition exactly summarizes our original demand that V}
c Wl

Note if V, C Vi, then it follows (same arguments) thatV; C V5, and
Vi C Vj41 1n general.



Some preliminaries:

Given a Hilbert space H and a closed subspace V, for f € H write
f=v+ot

where v € V and vt € V1.

Definition: The operator P defined by
Pf=Plv+ov)=v

is the orthogonal projection onto V.
Note P is a bounded linear operator (see exercises).

Easy to check that | P|| = 1if P # 0 (see exercises).

Ex: V =R3. P(z,y,2) = (z,y,0) = is the orthogonal projection onto the
x—1y plane.

P(x,y,2) = (0,0, z) = orthogonal projection onto z axis.

(%2

- M 0= pays

Ex: V C L*[—n,n] is the even functions. Then for f € L?

flx) + f(==)
2

Pf(x) = feven(z) =



(see exercises).

S. How to construct the wavelet?

Recall we have now given conditions on the scaling function:
Condition

(a) LVocVaiacVycVicVyC Vs,

is equivalent to:

(i) $(w) = mo(w/2)8(w/2),

where my is a function of period 2.

Condition

(f) There is an orthogonal basis for the space V in the family of functions

ok = P(x — k)

1s equivalent to:

1
i1 27k)| —
(11) Z (w27 =3
Condition

(b) NV,={0}

can also be shown to follow from (i1) as follows:

Proposition: If ¢ € L*(R) and satisfies (ii), then ,ﬁZVj = {0}.
je
Proof: Denote C,. to be compactly supported continuous functions.

Let f € NV;. Let e > 0 be arbitrarily small. By arguments as in problem
JEZ

I1.2 in R&S, C. is dense in L?(IR), so that there exists an f e C. with
If = FIl <e,
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with || - || denoting L? norm. Let

P; = orthogonal projection onto V.

Then since f € V;:
1f = Pifl = 1Pif = Pifl = 1P(f = DI < IIf = fl < e
Thus by triangle inequality
A< IF = Pifll + I1BiFIl < e+ [P -

Since P;f € V;, we have
Pif =) cirdpn().
J
where cji, = (Qji, f) (recall {¢ji(x)}?2 _ is an orthonormal basis for V).

Thus if || f|loc = suplf(2)],
IBF17 = lewl = D [ PP
k k

2

[assuming [ is supported in [—R, R] ]

2
<oy ([, 1o~ ojas)

k

[ox@ Fw) s

[using Schwartz inequality (a(z)b(z)) < |la(x)||||b(x)|[]

<OIFRY [ ttde [ (e bPds
k [_R7R] [_RrR]

—2|fIE2RY [ (e(2in - b)Pde
k [_RaR}

11



y:2-jar—k ~192 9
Z RIS 2R / 16(y)|2dy

SR,

[where Sk = Ugezlk — 2R, k + 2/R] (note we replaced k — —Fk in the
union) assuming j large and negative, so 27/R < 1; then the intervals here
do not overlap for different k£, and we can replace the sum over £ by a union
of intervals]

j— -0

= 1 £12 2RY / Ysa, @) 6(w)Pdy — 0
k

by the dominated convergence theorem, since if y ¢ Z, x5, ,(y) T 0.

Thus by (6), we have for j large and negative and all e > 0 :
A< If = Pif+ 1Pl < e+ 1P F]] < 2e.
Thus || f|| =0and f =0. O

Condition

(c) U V,, is dense in L*(R)

also follows from (i1):

Proposition: If ¢ € L*(R) and satisfies (ii), then 'UZV} = L*(R).
je

Proof: Similarly technical proof.
Condition
d) f(x)eV, = f(2z) €V,
1s automatic from the definition of the V/,.
Condition
) flz)eVy = flz—k) €V

1s also automatic from definition.

12



Thus we conclude:

Theorem: Conditions (i) and (ii) above are necessary and sufficient for the
spaces {V;} and scaling function ¢ to form a multiresolution analysis.

Thus if (1), (i1) are satisfied for ¢ and we define the spaces V; as usual, the
spaces will satisfy properties (a) - (f) of a multiresolution analysis.

Recall: orthonormality of translates {¢(x — k) } ez is equivalent to:

1
i1 27k)|
(ii) Z| w+ 27 =5

Rewrite (i1):

2 Imo(w/2 + k)2 [B(w/2 + Th))? = &

= 3= Xlmo(w’ & wh)? B’ + 7))
[W = w/2]

=3 |mo(w' + 7k)Plo(w’ + k)|

k even

+ 3 Imo(w’ + k) 2 p(w’ + k)2
k odd

= Y |mo(w' + 7 - 2) 2 |p(w’ + 7 - 2k)|
k

+ S mo(w’ + 72k 4+ 1)|2 [¢(w’ + (2k + 1)
k

my periodic

WY 16"+ 2mk) P + [mo(w' +m)[7Y |¢(w” + 7 + 27k)|?
k k

by Gi
y (i1) ‘MQ(MI)P'% —|—|m0(w’—|—7r)\2'%-

This implies that

13



[mo(w")|* + Jmo(w’ + )" = 1.

What about wavelets? Recall we define W; = V.1 ©V;. We now know
that {¢;,(x)} form basis for V. The wavelets 1;; will form basis for W,

14



6. What are ;;?

[Recall norms and inner products of functions are preserved when we take
Fourier transform. Let's take FT to see. ]

Note if we find W, =V} & V), then we will be done.
[Let's look at Fourier transforms of functions in these spaces:]

Note that if f € V), then
fl@) =) arl@—k) =) ar do(x)
k k
gives by F.T.:

Flw) = ar Flgor(2) = > _are ™ d(w) = my(w)d(w)

where

mys(w) = Zake_““".

k

is a 27 periodic L?[0, 27| function which depends on f. In fact reversing
argument shows (8) and (9) are equivalent.

Similarly can show under Fourier transform that g € V; equivalent to:

~

G(w) = my(w/2) p(w/2).

with m,( - ) some other 27 periodic function on L?[0, 27].

Notice functions my and m, both have period 27 (look at their Fourier
series). Also note above steps are reversible, so equation (9) implies (8) by
reverse argument.

Thus:

feVi & f=mw/2)dw/2)

15



Recall: we want to characterize f € Wj; such an f has the property that
feViand f 1LV

Now note:

fLVy & fLouVke F L b,

& /OO T(w) eiwk%dw =0

2m(m+1)

) =
f(w) e o(w)

& O:/_w?(w)ei”k%dwzgl

0. ™m

2
= Z F(w + 2mm)e™ @26 + 2m) dw

m 0

27
/ kaZf (w + 27m) d(w + 27m) dw .

where above identities hold for all k.

Hence [viewing sum as some function of w]

Z/]\”(w + 27m) ¢(w + 2wm) = 0.

Thus:

0= S"F(w+ 2mm) ¢(w + 2wm)

— ;mf((w +27m) /2)((w + 27m) /2)mo((w + 27m) /2)d((w + 27m) /2)

= %:mf(w/2 + 7m) d(w/2 + m) mo(w/2 + 7m)(w/2 + 7m)

= + 3 my(w/2 + 7mm) d(w/2 4+ wm)

meven modd

16



~

x mo(w/2+mm)od(w/2 + mm)

~ ~

=> ms(w/2 +2mm)p(w/2 + 2rm)my(w/2 + 27m) p(w/2 + 2Tm)

m

~

+ > - mp(w/2 + 7+ 2mm)p(w/2+m+2Tm)

~

x my(w/2 4+ 7+ 2mm)p(w/2 + 7+ 2mm)

= mf(w/Z)mo(w/Q)%: d(w/2 + 27m) d(w/2 + 27m)

+ my(w2 4+ m)mo(w/2 + )3 (w/2 + 7 + 2m) (w2 + 7 + 27m)
= my(w/2)mo(w/2)2 |$(w/2 + 2mm) |

+ my(w/2 4+ m)ymo(w/2 + w); 1(w/2 + 7 + 27m) |2

= (my(w/2)my(w/2) - 5= + myp(w/2 4+ m)mo(w/2 + 7)) - 5=

= my(w)mo(w’) + myp(w’ + m)my(w’ + ) =0 3)

Thus (note mg(w’) and my(w’ + m) cannot vanish together); let w’ — w :

my(w) = — —— mp(w + ) = A(w) mo(w + )
where
AMw) = — my(w+ )
(w) .

17



combining fractions and using (3)

= 0.
Define v(2w) = A(w)e ™.
Then

V(2w +27) = Aw + ) e @)

— _AW)e e = Aw)e ™ = v(2w)

so v has period 27.

Thus f(w) = my(w/2)$(w/2) = Aw/2)mo(w/2 + 7) §(w/2)

= v(w) e mo(w/2 + ) $(w/2).
Thus we define the wavelet v (x) by its Fourier transform:

b(w) = e“Pmg(w/2 + ) p(w/2)
Thus

Tw) = v(w)yd(w).

Going back in Fourier transform, we would get (compare with how we got

J(w) =ms(w)d(w))
fl@) =) apip(z — k).

F
where a;, are coefficients of the Fourier series of v(w), i.e.,

v(w) = Zakeik‘“.
F

To justify process of Fourier transformation as above, need to also show that

the coefficients aj, are square summable (i.e. Y _|ax|* < 00), since we do not
z

know whether Fourier transform properties which we have used in getting

are valid otherwise.

18



Note since aj, are coefficients of Fourier series of v, we just need to show v
is square integrable on [0, 27| (recall this is equivalent to the a; being square
summable). To show that v is square integrable, note that with m as in

use my €L%[0,27] o

00 > Jo" dw |my(w)]?
Y (D 27 s |A ()2 [mg (w + 7) 2
= (I + 1) o NP o+ P
[substitute w’ = w — 7 in second integral; then rename w '’ = w again]
/oﬂ dw (M) [mo(w + ) [* + /Oﬂ dw [A(w +7)|* [mo(w + 27)|*
[recall that by periodicity |mg(w + 27)|? = |mg(w)|?* and use (12)]
= [ aw M@ (mo(wr+ m)? + ()l

ﬁt/mwww

0

= / dw |v(2w)|?
0
/:2 1 27
e
— 2 0

Thus we have that oo > f027r dw|v(w)|?, so that v is square integrable, as
desired.

This was only thing left to show ¥ (2z — k) span W,. Wish to show

also orthonormal. Use almost exactly the same argument as was used to
show the same for ¢(z — k):

19



> Jh(w+ 2mk) P =Y Cmo(w/2 + wk + )| d(w/2 + k)|
k k

[now break up the sum into even and odd £ again and use the same method
as before]

:( DY ) mo(/2 + ke + w2 B(w/2 + k)

keven kodd

= ; Imo(w/2 + 7 - 2k + )| p(w/2 + 7 - 2k)|?
+ §|m0(w/2 +re 2k + 1) 4+ 1) |p(w/2 + 7 (2k + 1))
= |mo(w/2 + )| %]&Kw/?%—w-2k>P
+ |mo(w/2)|” %;@Xw/24—w-<2k—%1)ﬂ2

using(ii)a_boveagain (|m0(w/2 T 7_‘_)‘2 + |m0(w/2)|2) s

= 2

By same arguments as used for ¢(x — k), it follows by Y(x — k)
orthonormal.

This proves our choice of 1 gives a basis for W, as desired.
Specifically,

thor () = Pz — k)

form an orthogonal basis for W, (in fact can show their length is 1 so they
are orthonormal).

In same way as for ¢, can show immediately that since functions in W; are
functions in W, stretched by factor 2/, the functions

Vi (x) = 22 (20 — k)

20



form a basis for W, (j fixed, k varies).

Since L? =direct sum of the W, spaces, conclude functions
{1 (%) }3%=_o over all integers j and k form orthonormal basis for L.

Conclusion:
If we start with a pixel function ¢(z), which satisfies

(i) (w) = mo(w/ 2)$(w/ 2) (with my some 27-periodic function)

(i1) Zk:|¢(w+ 21mk|? = %

then the set of spaces V; form a multiresolution analysis, i.e., satisfy
properties (a) - (f) from earlier.

Further, if define function (x) with Fourier transform:

~

D(w) = /2 my(w/2 + ) d(w/2)

(here my is from (i) above), then
V() = 23124 27z — k).

form orthonormal basis for L2

[Next we'll construct some wavelets]

7. Additional remarks:

Note further that has another interpretation without Fourier
transform :

Recall the two scale equation:

¢(x) =) hidu(x).
k

Also then we have (see eq. (4)) that if

21



hk —ikw
mo(w) = Y —=e "
zk: V2
then:

$(w) = mo(w/2)d(w/2).

Then we have from

~ . > 1 — . ~
w (w) _ ezw/QZ %hkelk(w/2+ﬂ-) ¢(w/2)

k=—00

— eiw/QZ Lh_keikﬂeikw/Q a(w/z)

= 1 — , ~
— Z _hk(_l)kez(k+1)w/2 Qb(CU/Z)

where
g = E_l_k(—].)ikil _ E_l_k(—].)k+1 standagform E_l_k(—].)kil

and (recall) A defined by

22



= ()

8. Some comments on the scaling function:

Recall
d(w) = mo(w/2) (w/2)

from earlier. This stated that the Fourier transform of ¢ and its stretched
version are related by some function mg(w/2), where mg is a periodic
function of period 2.

Lemma: The Fourier transform of an integrable function is continuous.
Proof: exercise

Assumption: ¢(x) (the scaling function) is integrable (i.c., its absolute
value has a finite integral).

Fact: Under our assumptions, it can be shown that [~ dz ¢(z) =1
[proof is an exercise]

Consequence: A consequence of the above assumption is that the Fourier
transform ¢ (w) satisfies:

o0

6(0) EV%_W _ dz ¢(z) e 0 = V—/ dz ¢(z \/%_W

Now recall we had

$(w) = mo(w/2)d(w/2)

for some periodic function m,. Replacing w by w/2 above:

B(w/2) = mo(w/4)d(w/4);
Plugging into
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A~

$(w) = mo(w/2)mo(w/4)P(w/4).
Now taking and replacing w by w/4, and then plugging into

$(w) = mo(w/2)mo(w/4)mo(w/8)$(w/8).

Continuing this way n times, we get:

$(w) = mo(w/2)mo(w/4)mo(w/8)... mo(w/2")d(w/2").

or:

( Hmo (w/29) ) d(w/2")

IO ﬁmo(w/2j).

P(w/2m) j=1

Now let n — oo on both sides of equation. Since 5 is continuous (above
assumption), we get

Bw/2") — B(0) = J%

Since the left side of converges as n — oo, the right side also
converges. After letting n — o0 on both sides of

¢_w :ﬁ (0/2),

P(w) \/7Hm0 (w/27).

Conclusion: If we can find mg(w), we can find the scaling function ¢.
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9. Examples of wavelet constructions using this technique:

Haar wavelets: Recall that we chose the scaling function

o) = {

1 if0<zx<l1
0 otherwise

5

and then we defined spaces V.

From ¢ we conscructed the wavelet 1) whose translates and dilates form a
basis for L2,

Such constructions can be made automatic if we use above observations.

Note first in Haar case:
1 e—iwx

1 .

1 1 [ e~ 1]
= -+ —

o V2

_ 2 efiw/Q 6—iw/2 B eiw/2
NG 2 2

— 2 e—iw/2

V2w

For Haar wavelets we can find m(w) from:

sin w/2.

~

S(w) = mo(w/2)$(w/2),

SO

o (0]9) — A(w) :leﬂ-w/zl sinw/2
0(w/2) d(w/2) 2 sinw/4

_ 1 6—iw/4 sin (2 ) w/4)
sinw/4



1 — 2sinw/4 cos w/4

sinw/4

1
= 3 e~/ 2 cos w/4

—iw/4

=e cos w/4.

Recall wavelet Fourier transform 1is:

~

@ Pw) =P my(w/2+ ) d(w/2)

In this case

~ g 4 :
D(w) = 12 1@/ cos (/4 + 7/2) e sinw/4.

V2w

[using

cos (w/4+m/2) =cosw/dcosm/2 — sinw/4dsinT/2 = — sinw/4]
49 -
= L e gind(w/4)

V2w

Can check (below) this indeed is Fourier transform of usual Haar wavelet ),
except for factor of —e™* (not important since a wavelet's negative is also a
wavelet, and mult. by e just translates wavelet by 1 unit)

To check this, recall Haar wavelet:

1 ifo<z<1/2
w(x)_{—1 if 1/2<z<1

Thus:
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_ \/%(/01/2+/1:2> W(@) e da

1 /2 1 1 .
_ L [T gy L / e i
\/27r/0 v 2mJ1)2

2e" /2 e 41

— +
\/%iw \/ﬂiw

—iw/2 w/2
_ 2 (_e—iw/2+e—iw/2 (e +e /))

V2miw 2

2 . ,
= (—e‘“"/2—|—<e_“"/2 cos w/2>

\/%z'w

9 . .
= (—e“"/Q + /2 cos2-w/4>

\/ﬁiw

[using cos 2z = 1 — 2 sin® z]

9 . .
= ( — e W2 4 e /2(1 — 2 sian/4))
V2T iw
4 ,
- (e"“’/Q sin2w/4>
V2T iw
41

= (ei“’/Q sian/4)

V2w
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10. Meyer wavelets: another example -

Scaling function:

1 if |w] < 27/3

P(w) = ——={ cos[Zv(Z|w| —1)] if 27/3 < |w| <47/3
\/% 0 otherwise

[error in Daubechies : 3/47 instead of 3/27 inside /]

where v is any infinitely differentiable non-negative function satisfying

0 1fz<0
viz)=< 1 ifz>1
smooth transition in v from 0 to 1 as x goes from 0 to 1

and

viz)+v(l—z) =1

fig4: v(z)and v(1 — z)
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. S .
—dmi3 —2wi3 w3 dmis

fig 5: Fourier transform a(w) of the Meyer scaling function

Need to verify necessary properties for a scaling function:

(1)

s

S 1B+ 2nk) = (20)

To see this, consider the two possible ranges of values of w:

(a) |w+ 27mky| < 27/3 for some k;. In that case (see diagram above):

&w+%mﬁ:—i—- d(w+27k) = 0if k # ky

Vor

since if |w 4 27k | < 27/3, then |w + 27k| > 47 /3 for k # ky. Thus
holds because there is only one non-zero term in that sum.

(b) 27/3 < w+ 2wk; < 4m/3 for some ky. In this case we also have
—4r/3 <w+2m(k; — 1) < —27/3.
Also, for all values k # ki or k; — 1, can calculate that
2rk ¢ [—4m/3,4m /3],

SO

o(w+ 27mk) = 0.

So sum has only two non-zero terms:
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2> |$(w + 2mk)|* = 27r(|$(w + 2rk,y
k

P+ 6w+ 2m(ky = D).

= cos’ §V(%|w—|—27rk1| — 1)] + cos® [gu<%]w—|—27r(k:1 —1)| - 1)]
oo (gpevain 1) [ oot )
=cos”|—v| —w+3k1 —1])| +cos”|-v| —(—(w+2m(k; —1))) — 1
|2\ 27 | |2\ 27
— cos? zy(iw—ki’)kl—l) + cos? zy(—iw—?)kl—l—Q)]
|2 \2m | | 2 2m
= cos? Ey(iw—ki’)kl—l) + cos? z(l—y(l— (—iw—3k1—|—2)))]
|2\ 27 | | 2 2m
= cos? zy(iw—ki’)kl—l) + cos? z—zu<iw+3k1—1)]
|2\ 27 | 12 2 \ 2«
= cos? zy(iw—ki’)kl—l) + sin® [zy<iw—|—3k1—1)]
|2\ 27 | 2 \ 27
=1

Note that above |w+ 27(k; — 1)| = —

parentheses always negative for our ran
used cos (g — :z:) = sin .

Note since cases (a), (b) cover all po

(w4 27(ky — 1)), since quantity in
ge of w. In next to last equality have

ssibilities for w (since they cover a

range of size 27 for w + 27k;), we are finished proving

Also need to verify:

(i)

$(w) = mo(w/2)d(w/2)

for some 2m-periodic my(w/2). Indeed, looking at pictures:
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S Ini3 8nn

fig6: $p(w) and P(w/2) (----)

ratio of these two looks like:

—

=3 473

fig. 7: ¢A(w)/$(w/2) = $(w) in the interval [—2m, 27].

Note since ratio ¢(w)/d(w/2) = d(w) in [—2m, 27, we can define

(w) — o (e
/2) ¢(w)

<)

mo(w/2) =

<)

ifw e [—2m, 27].

Definition ambiguous when numerator and denominator are 0; then we
define ratio so holds for all w € [—27, 27].

Definition also ambiguous for w ¢ [—2m, 27| since numerator and

denominator both 0. So define m(w/2) by periodic extension of above for
all real w.

How to do that? Just add all possible translates of the bump ¢(w) to make it
4m-periodic:
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mo(w/2) = Z ¢ (w+ 47k).

Check:
mo(w/2)p(w/2) = Z b(w + 4mk) d(w/2)

k

—\/%¢ P (w/2)

= ()

where we have used the fact that ¢(w + 47k) has no overlap with ¢(w/2) if

k% 0.

[So we expect a full MRA.]
11. Construction of the Meyer wavelet

Standard construction:

P(w) = e mo(w/2 + ) $(w/2)

=e"*y "p(w + 2m(2k + 1)) d(w/2)
k
= 2 §(w+ 2m) + Blw — 2m) | B(w/2)

upports of 2d and 3d factors do not overlap for other values of k; note

Ls
5 5 since gb is real]
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) , | A ! , | | |
~§m/3  _b, —dnf3 arf3 5 §m/3

fig 8: d(w + 27) + d(w — 27) and P(w/2) (dashed)

147 |
(&)

St -8B -2r 5. 2gp 2% 83 AT

fig 9: [(w+ 2m) + 3w — 2m)] B(w/2)

Thus have 2 distinct regions:

(a) For27/3 < w < 47/3 we see in diagram that
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e 2(w) = V2 [B(w+ 2m) + Blw — 2m)| B(w/2)
= ¢(w — 27)

1 3

= Ccos zV(—\cu—27r|—1)]
A/ 21 _2 2
1 Ks 3

- Tl -2 (w—2m) —1
\/%COS_QV< 27T(w ) )]
L cos-ﬂ 5 + 2

= —v|——w
N _2 2

-]

So by symmetry same is true in —27/3 < w < — 47/3, so replace w by |w|
above to get:

N 1
e /2 (w) = sin[zv<;|w\ — 1)] for 27m/3 < |w| <4m/3
T

Vor 12

(b) For 4r/3<w<8xr/3, we see from diagram (note
21 /3 < w/2 < 47 /3):

(W) = V2m [$(w + 2m) + Blw — 2m)| B(w/2)
— 3(w/2)

1 Ks 3
= —v|l —w/2—-1
\/27TCOS_2V<27TM/ )]
1 cos-7T 3 1
‘/27'(' _2 47T

34



Again by symmetry same is true in —87/3 < w < — 47/3, so replace w by
w:
™

R 1
e‘“"/zw(w) = 27Tcos lgy(%ku‘ — 1)] for 4n/3 <|w| < 8m/3

Thus:

] e“/?sin [Zv(L|w| — 1], if 27/3 < |w| <4rm/3
P(w) = N e“/2cos [Zv( Zlw| — 1)], if 47/3 < |w| < 87/3

0 otherwise

il

v 8w 2r  im 2ep o 8wz 4w

Fig. 10: The wavelet Fourier transform | (w)|
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theyec phi(k} of acdec O

i N :
10 -5 \j \/ 5 10

Fig. 11: The Meyer wavelet ¢(z)

12. Properties of the Meyer wavelet

Note: If v is chosen as above and has all derivatives 0 at 7/2, can check
that ¢(w) is:

e infinitely differentiable (since it is a composition of infinitely
differentiable functions), and one can check that all derivatives are 0 from
both sides at the break. For example, the derivatives coming in from the left

at w = 2{ are:

ar ~,
dw” ¢(w ) o =0
3
and similarly
" ~, .
=0
dwn w(w ) w= 2T

(proof in exercises).
e supported (non-zero) on a finite interval
Lemma:

(a) If a function v (x) has n derivatives which are integrable, then the
Fourier transform satisfies
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D) < K1+ |w])™

Conversely, if holds, then () has at least n — 2 derivatives.

(b) Equivalently, if ¢(w) has n integrable derivatives, then
(@) < K(1+ |f)™"
Conversely, if holds, then ©(w) has at least n — 2 derivatives.
Proof: 1n exercises.
Thus: ¢ (z)
e Decays at oo faster than any inverse power of x
e [s infinitely differentiable

Claim:
() =22 (2w — k)

form an orthonormal basis for L?(RR).

e Check (only to verify above results - we already know this to be true from
our theory):

[ @i = [P =1

(0.¢) —00

0 1
/ D) dw = — / duw sin? [L(iM - 1)]
+/ dw cos® [zu<i\w| —1)]
F<lwl<F 2 \Am

[getting rid of the | - | and doubling; changing vars. in second integral]
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[usingv(s +1/2) =1—-v(1/2—s)

— §</01/2d5<1 —f—COSQ[gV(S)]) + 01 2 s

S
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e To show in another way that they form an orthonormal basis, sufficient to
show that for arbitrary f € L?(R),

f:|<%'kaf>\2=/oo|f(w)l2daf
ik -

o0

(according to exercises).

Now note:
0 e’} 2
> £ = 3| [ de bt fla)do
gk Jik
00 N _ 2
-y / dw F(w) P ()
7.k
Note if

Vip(z) = 22 4p(202 — k).
Then as usual:

Y (w) = 2792 P27 w) e 72 R,

Plug this in above and can do calculation to show (we won't do the
calculation):

S ) = / dz |f (@),
J.k >
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as desired.

CONCLUSION:
The wavelets

Yip(z) = 2112 4p(2Iz — k)

form an orthonormal basis for the square integrable functions on the real
line.

13. Daubechies wavelets:

Recall that one way we have defined wavelets is by starting with the scaling
(pixel) function ¢(z). Recall it satisfies:

$(w) = mo(w/2)¢ (w/2)

for all w, where mg(w) is some periodic function. If we use my as the
starting point, recall we can write

~ 1 H j
¢(w) = ﬁHWO(w/Q ).

j=1
Recall my is periodic, and so has Fourier series:
mo(w) = Z ap ek
k
If mq satisfies |mg(w)|? + |mo(w + m)|?> =1, then it is a candidate for
construction of wavelets and scaling functions.

For Haar wavelets, recall mg(w) = €™/2 cos w/2, so we could plug into

to get &, and then use previous formulas to get wavelet W(x).

If we start with a function mg(w), when does lead to a genuine
wavelet? Check conditions:
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1)
\/Tﬁ w/2j
=1

1 o ;
— ﬁmo(wﬂ)gmo(w@ )
= mo(w/Q)f[mo(w/ZjH)

= my(w/2)$(w/2)

Recall this implies that V; C V| where
|ak\2 < OO}

{ Z aipPji(T
(usual definition) with ¢1.(z) = 2j/2¢(2jx — k)

k=—00

(2) The second condition we need to check is that translates of ¢
orthonormal, i.e.,

P 1
S 1B+ 2nk) P = o
P 2
If
N .
mg(w) = finite Fourier series = Z are”“* = trigonometric polynomial
k=—N

there is a simple condition which guarantees condition (2) holds.

Theorem (Cohen, 1990): If the trigonometric polynomial m, satisfies
my(0) =1 and

[mo (W) + Jmo(w + ) =1
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(our standard condition on my), and also mgy(w) # 0 for |w| < 7/3, then
condition (2) above is satisfied by

. 1 X ;
P(w) = ﬁHmO(W/Q )

Proof: Daubechies, Chapter 6.

Since condition (1) is also automatically satisfied, this means ¢ is a scaling
function which will lead to a full orthonormal basis using our algorithm for
constructing wavelets.

Another choice of my is:

1 . ‘ ,
mo(w) = gl(1+ V3) + (34 V3)e™™ — (3+v/3)e P + (1 — /3) e 73]
(Fourier series with finite number of terms).

1.5¢

1.5t
Fig 12: Real (symmetric) and imaginary (antisymmetric) parts of m(w)

To check Cohen's theorem satisfied:
(1) Equation satisfied (see exercises).

(i) If my(w) = Remg(w) + ¢ Immg(w),
Imo(w)|? = |Re mg(w)|* + [Immg(w)|* # 0
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for |w| < 7/3, as can be seen from graph above.
So: conditions of Cohen's theorem are satisfied.
In this case if we define scaling function ¢ by computing infinite product

(perhaps numerically), and then use our standard procedure to construct
wavelet ¥(x), we get:

fig 13: pictures of ¢ and ¢

Note meaning of my: In terms of the original wavelet, this states

o) = L1+ /3)p(22) + (3+ /3)p(2z — 1)
(3—ﬁ>¢<2w—2>+<1—¢§>¢<2x—3>]

(see above). Note this equation gives the information we need on ¢,
since it determines mg(w).
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14. Other examples
Note again it is possible to get other wavelets this way: If we demand

6(z) = 226 ¢(22) + 854 (22 — 1) + 1.24 (22 — 2)
+.196 (22 — 3) — 1.434 ¢(22 — 4) — .046 $(2z — 5)
110 6(22 — 6) — 008 $(22 — T) — 018 (22 — 8)
+.0046(22 — 9)
Then this results with an m(w)

mo(w) = .113 4 .427 €™ + 512 * 4 .098¢™ + ... + .002¢"™.

4,

P

_4,

Fig 14: Real (symmetric) and imaginary parts of m; note condition (ii) of
Cohen's theorem is satisfied.

Can check it satisfies condition (i1) of Cohen's theorem and resulting ¢ is
obtained:

o0

$(w) = | [mo(w/2’).

j=1

It satisfies required properties (a) - (f) of a multiresolution analysis.
Corresponding scaling function s¢(x) and wavelet s (x) are below
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1.0 50

1 s5Y

-4 -2 0 2 4
Fig 15: Scaling function and wavelet for the above ¢ choice
NOTE: Can show that if there is a finite number of terms on the right side

of , then corresponding wavelet and scaling function are compactly
supported.

15. Numerical uses of wavelets
Note that once we have an orthonormal wavelet basis {1}, can write
any function:

fl@) = apu(z),
7.k

with aj, = (f,¥;). Numerically, can find aj, = (¢, f) using numerical
integration to evaluate inner product.

With Daubechies and other wavelets, there are no closed form for the
wavelets, so above integrations must be performed on the computer.

But there are very efficient methods of doing this: in order to get all the

wavelets 1);;, into the computer, we just need to input one - all others are
rescalings and translations of the original one.
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There are efficient algorithms to get coefficients aj,; more details in
Daubechies' book.

SOME GENERAL PROPERTIES OF ORTHONORMAL WAVELET
BASES:

Theorem: If the basic wavelet (z) has exponential decay, then
cannot be infinitely differentiable.

(in particular, if ¢ has compact support, then 1 cannot be infinitely
differentiable).

Proof: Daubechies, Chapter 5.

Compactly Supported Wavelets:

So far we are able to get wavelets
Vi (x) = 22420z — k)

which form an orthonormal basis for L2. Note Haar wavelets had compact
support. When will wavelets be compactly supported in general?

Recall we assume that given basic scale space Vj, that we have scaling
(pixel) function ¢ such that {¢(x — k)}, form basis for V.

Recall

. Vo C W1,

° ¢(:C) e W = qb(:l?) c Vi

. V2 ¢(2z) e W

o {2 ¢(2z —k)}>, form a basis for V;

Recall since ¢(z) € V;, we have for some choice of hy:

() = ihk V2 ¢(22 — k).
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Constants hj relate the space V) to V.
We will see that:

Theorem:

finitely many hy #0 & 1, ¢ have compact support.

Proof:
< : Assume ¢ has compact support. Then note since \/§q§(2aj — /)
are orthonormal,

e = / V26(2x — 0)¢(x)da

= () for all but a finite number of 7/ :

M N
~ v

fig 16 : Note h; = integral of product = 0 for all but finite number of ¢

To prove = : (rough sketch only)

Assume that hj are O for all but a finite number of £. Then need to show
¢(x) has compact support.

Strategy of proof: look at ¢(w).

Recall we defined

Recall:
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1 [©¢)

dw) = — [ mo(277w).
e From this show that ¢(w) extends to an analytic function of w in whole
complex plane satisfying:
[G(w)] < C(1 + |w])M eMime

for constants M and N.

o This implies by Paley-Wiener type theorems that ¢(z) = F~' (¢) is
compactly supported. [

GENERIC PRESCRIPTION FOR COMPACTLY SUPPORTED
WAVELETS:

e Start with finite sequence of numbers h; (define how Vj will be related
to V1)

e Construct
hk _‘k
mo(w) = — e "
; V2

check that it satisfies Cohen's theorem conditions :
|mo(w)| # 0 for |w| < 7/3.
and

[mo(W)[* + [mo(w + m)|* = 1.

e Construct
1 X ‘ ~
\/?H mo(27w) = ¢(w)
=1

J

e Construct Fourier transform of wavelet by:
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P(w) = ePmo(w/2 +7) d(w/2),

e Take inverse Fourier transform to get ¢(z) = wavelet

SOME FURTHER PROPERTIES OF WAVELET EXPANSIONS

QUESTION: Do wavelet expansions actually converge to the function
being expanded at individual points x?

Assume that scaling function ¢ is bounded by an integrable decreasing
function. Then:

Theorem: If f is a square integrable function, then the wavelet expansion
of f

@) =3 ala)
7.k

converges to the function f almost everywhere (i.e., except on a set of
measure 0).

QUESTION: How fast do wavelet expansions converge to the function f?

ANSWER: That depends on how “regular" the wavelet ¢ is. More
particularly it depends exactly on the Fourier transform of :

Theorem: In d dimensions, the wavelet expansion
Fl@) = ap i (x)
Ik

converges to a smooth f in such a way that the partial sum

> aptu(e)

J<Nk
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differs from f(x) at each = by at most C - 27V, iff

/@(w)ﬁ w2 dw < oo,

CONTINUOUS WAVELET TRANSFORMS

Consider a function v(x) € L? (i.e., 9 is square integrable), such that ¢(x)
decays fast enough at oo (faster than 1/z?), and such that

/_Z Y(x)dx = 0.

Then we can define an integral wavelet expansion (integrals instead of sums)
using re-scalings of (z):

Define rescaled functions

Yap(@) = lal'? Pla(z —b)).

[note a — 1/a in definition of Daubechies]

Here a,b € R. Thus a measures how much 1) has been stretched (dilation
parameter), and b measures how much ) has been moved to the right
(translation parameter).

New point: dilation parameter a and translation parameter b can take on any
real value.

Now define wavelet expansions in this case (analogous to Fourier transform
-- called wavelet transform): given f € L?(R), we define the transform
(assuming that ) is real)

(W ) (ab) = / dz f(z) [a] Pea(z — b))

— [ do f(@)usta)
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= <¢a,b7 f>
How to recover f from (W f)(a,b)?

Claim:
_c / / dadb (W F)(a,b) ves(@)
where

c! = —27r/dw|w\_1|@$(w)|2.
Pf. of claim (sketch; details in Daubechies, Ch. 2):

We will show that for any g(x) € L?,

(9la).1(0)) = {g(@).C [ ) / " dadb (W £)(a,5) dus(a))

To see this, note that

- [ 457w

[use “Plancherel Theorem™ for wavelet transforms]

= C’//dadb (Wg)(a,b)(W f)(a,b)

e / / da db (g(x), s (@) (W £)(a,b)(x)
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_ <g(x),C [ [ daas <Wf><a,b>wa,b<x>>,

as desired, completing the proof.

Thus we know how to recover f(z) from W f(a,b) (analogous to
recovering f(z) from f(w) in Fourier transform).

QUESTION: What sorts of functions are (W f)(a,b)? For some choices of
1, these are spaces of analytic functions.

Convolutions:

Definition: The convolution of two functions f(x) and g(z) is defined to be

f(z)*g(x) = /_Oof(fc —y)g(y)dy.

Theorem 1: The convolution is commutative: fxg = gxf
Proof: Exercise.

Theorem 2: The Fourier transform of a convolution is a product.
Specifically,

F(f(@)xg(x)) = V2m f(w)§(w)
Proof: Exercise.

A~

Lemma 3: For any function f, F(f(—x)) = f(w)
Proof: Exercise.

APPLICATION OF INTEGRAL WAVELET TRANSFORM: IMAGE
RECONSTRUCTION (S. Mallat)

Dyadic wavelet transform: a variation on continuous wavelet transform.
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Now define new dilation only by powers of 2; arbitrary translations:
Yip(x) = 279(2 (z — b))
Define
Vi(z) = 27 ().

(Still allow b € R to take all values, but restrict a = 27.)

Define this dyadic (partially discrete) wavelet transform by:
WG = [ £)vpala

1.e., usual set of wavelet coefficients, except that b is continuous.

Note:

- /da:f(a:) 21p(2/(z — b))

— [ do (@) iyt~ )

= (f*1)(b)
(a convolution) where as above

V;(x) = 2/¢)(27x) = shrinking of ¢ by a factor 2/.

New assumption: Fourier transform @(w) satisfies

00 o - 1
S 1) = o

j=—o00

Now: given f(z), consider dyadic wavelet transform; a = 2/ only:

Can show under our assumptions that can recover f in this case too:
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Recovery formula for f is:

(0.¢]

fl@) =" (WFGz)xp(—x)

j=—oc

(convolution in variable x). It is easy to check that this is correct: if F
denotes Fourier transform:

f( i(Wf)(j,x)*wj( > (Zf z )z *¢j(—x)>

j=—o0 j=—o0

- ]ioof(f( )it () sty (—))
_ 27;27(@ 55() §;(w)
_ ziio 7 (w) B2 w) D(2Tw)
_ 27;2?(@!%2—] WP
W) %jf;@(w W)

— F(w).

QUESTION: Given f(x), what sort of function is the wavelet transform
(W £)(4,b), as a function of j and b?

Let V = the collection of possible functions (W f)(j,b) = collection of
possible wavelet transforms. When is an arbitrary function g(j,b) a wavelet
transform?
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Can check that g must satisfy a so-called reproducing kernel equation:
g(J,b) is the wavelet transform of some function iff

9G.0) = (K)(Gb) = 3 ()t — b)sg(£,b)

{=—00

[this equation defines K g; note convolution is in b.]
Back to recovering f from wavelet transform:

Thus we can recover f as a sum of f at different scales:
F=Y (WG z)xp( — ).
j=—00

Since 1 is a known function, we can recover f from the sequence of
functions:

(WF)(=2,x)
(W =1,2)
(W£)(0,z)
(W, =)
(WF)(2,z)
(WF)(3,z)
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So: one can recover f from knowing the functions
(WF)(, ).
This is a lot of functions. What advantage of storing f in such a large

number of functions? We can compress the data.

CONJECTURE: We can recover f not from knowing all of the functions
W (4, z), but just from knowing their maxima and minima.

Meyer has proved this conjecture false strictly speaking certain choices of ¢
(e.g., a derivative of a cubic spline). It has been proved true for another
choice, the second derivative of a Gaussian.

d 2
Y(x) = %e_x

However, for either choice of 1) numerically it is possible to recover f(x)
from knowing only the maxima and minima of the functions W (j, x).

Numerical method:
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Assume that we are given only the maxima and minima points of the
function W (j, x) for each j. How to recover f?

Given f, first take its wavelet transform; get W (j, z). Define

[' = set of all functions g¢(j,z) which have the same set of maxima and
minima (in z) as W (j, x) for each j.

V = setofall g(j,z) which are wavelet transforms of some function of z.

Idea is: the true wavelet transform W f(j, z) of our given function f(z) is
in I' (i.e. has the same maxima as itself) and is in V' (i.e., in the collection
of functions which are wavelet transforms).

Thus
WfelNnV.

intuitive picture:

I = allfunctions with same
maxirna as Wi x)

1Y = desired point

?V = all functions which are wavelet
transforms

fig 17
Thus if we know just the maxima of W f(j, z), we can try to find W f(j, z)
That is:

1. We know maxima of W f(j,x), so
2. know I' = all functions with same maxima as W f(j, x)
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3. Find W f(j,x) as “unique” point in I" which is also a wavelet transform,
1.e., unique pointin I'N V'
Algorithm:

1. Start with only the maxima information about W(j,x). Call M the
maxima information.

2. Make initial guess using function g (j, z) which has the same maxima as
W(j, ).

3. Find closest function in V' = set of wavelet transforms to ¢;(j,z). Call
this function g»(j, z).

4. Find closest function in ' = functions with same maxima as M to
g2(j, ). Call this function g3(7j, x).

5. Find closest function in V' to g3(j, x); call this g4(7, x).

6. Find closest function in I' to g4; call this g5.

7. Continue this way: at each stage j find the closest function g; to g;—;
in

the space V or I' (alternatingly).

Eventually the ¢;(j W f(y desired.
ventually the gj(],a:)jjoo f(j,x) asdesire
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I = allfunctions with same
ExirE as Wi, x)

[ M = desired point

76.2) f[\-ﬂ‘ = all functions which are wavelet
transforms

CONCLUSION: We can recover the wavelet transform W f(j,z) of a
function just by knowing its maxima in x.

THE POINT: Compression. We can store the maxima of W f using a lot
less memory.

L3 : i
Fig. %: The upper left is the original lady image. The upper right image is a reconstruction from
the mazima representanion shown in the second column of g, 8. This reconsrruciion s ~ormed
with & iserations and the noise to signal ratio is 6.6 107 The lower lefi and lower right images
have been reconsrructed from the maxima represenianion sthown respectively in e third an.
Jourth column of fig. & (thresholding by the factors 4 and 8. The light textures have disappeared
but the strong edges and rextures remain unchanged.

Fig. 18
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f.{}‘ \".::1-

, 2‘\'
I Fﬂ_ 1',/ ,jl//{‘ﬂ;}rﬂ .. )
PR f ]J -!31,

m;.a mﬂmm;ﬁ-wmw H,.-fu,,}_for 12554 qrdummg.
shown at the top left of fig. 9. The second column displays che position of the mazim:s
Maif (.5). The third and fourth columns display the position of the local mazima whose ampli-
rude are respectively larger than 4 and 8. The maxima thar have been removed corresrond eisen-
tially to the noise and the lighs rexture irregularities,

Fig. 19

Wavelets and Wavelet Transforms in Two Dimensions

Multiresolution analysis and wavelets can be generalized to higher
dimensions. Usual choice for a two-dimensional scaling function or wavelet
is a product of two one-dimensional functions. For example,

P2(7,y) = ¢(2)9(y)

and scaling equation has form

Sz, y) =D hi - 262z — k, 2y — ).

kel

Since ¢(x) and ¢(y) both satisfy the sclaing equation

= th 202z — k
B

we have hy; = hih;. Thus two dimensional scaling equation is product of
two one dimensional scaling equations.
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We can proceed analogously to construct wavelets using products of
one-dimensional functions. However, unlike one-dimensional case, we have
three rather than one basic wavelet. They are:

v (z,y) = ¢(2)¥(y)
YU (z,y) = (z)d(y)

WU (m,y) = v()b(y).

The generalization of the one-dimensional wavelet equation leads to
the following relations:

k.l

I (z,y) =S gUD 2620 — k, 2y — 1)
k.l

YU () =S g 2620 — k, 2y — 1)
k.l

I 11 11
where 921) = hiqi, gl(gz ) = grhy, and géz ) = grar.

We can generate two-dimensional scaling functions and wavelets using the
functions ScalingFunction and Wavelet then taking the product. For
example, here we plot the Haar wavelets in two dimensions. Various
translated and dilated versions of the wavelets can be plotted similarly.
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Fig. 21: Haar wavelet D (z,y)
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Fig. 23: Third wavelet //1D (z, )

As example of another wavelet, here is so-called "least asymmetric wavelet"
of order 8 in two dimensions :
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Fig. 24: Least asymmetric wavelet of order 8

64



